This is a incomplete question. The complete question is:
It takes 348 kJ/mol to break a carbon-carbon single bond. Calculate the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon. Round your answer to correct number of significant digits
Answer: 344 nm
Explanation:
E= energy = 348kJ= 348000 J (1kJ=1000J)
N = avogadro's number = 
h = Planck's constant = 
c = speed of light = 

Thus the maximum wavelength of light for which a carbon-carbon single bond could be broken by absorbing a single photon is 344 nm
It could be Nitrous oxide
If copper is heated with iron oxide there is no obvious reaction because
copper is less reactive than iron.
On a reactivity chart, copper is far below iron. This makes it impossible for a replacement reaction to occur, so the equation doesn't change.
I hope I helped!
Answer:
The symbol for an atom indicates the element via its usual two letter symbol, the mass number as a left superscript, the atomic number as a left subscript (sometimes omitted), and the charge as a right superscript.
Explanation:
I hope that helps!! sorry if it dont!