Answer:
it is a physical change because when you heat up again a solution of sugar and tea you gonna obtain again sugar
I assume what you're asking about is, how does the temperature changes when we increase water's mass, according the formula for heat ?
Well the formula is :

(where Q is heat, m is mass, c is specific heat and

is change in temperature. So according this formula, increasing mass will increase the substance's heat, but won't effect it's temperature since they are not related. Unless, if you want to keep the substance's heat constant, in that case when you increase it's mass you will have to decrease the temperature
Answer:

Explanation:
In this case, we can start with the <u>formula of Platinum (II) Chloride</u>. The cation is the atom at the left of the name (in this case
) and the anion is the atom at the right of the name (in this case
). With this in mind, the <u>formula would be</u>
.
Now, if we used <u>metallic copper</u> we have to put in the reaction only the <u>copper atom symbol</u>
. So, we have as reagents:

The question now is: <u>What would be the products?</u> To answer this, we have to remember <u>"single displacement reactions"</u>. With a general reaction:

With this in mind, the reaction would be:

I hope it helps!
Answer:
Universal indicator can show us how strongly acidic or alkaline a solution is, not just that the solution is acidic or alkaline. This is measured using the pH scale , which runs from pH 0 to pH 14.
Explanation:
~Hope this helps
Answer:
See below :)
Explanation:
There is an evident reason why some of the solutions Carson's has listed and observed, does conduct electricity and some that do.
A flow of electrical charge is called an electric current. Ions are atoms, or sets of atoms, that contain an electrical charge. There are two types of ions, cation or a positively charged ion containing a deficiency of electrons, and anion or a negatively charged ion which contains a surplus of electrons. When a solution conducts electricity the charge is carried within by ions that move through the solution. The larger the number of ions in the solution, the better the conductivity of the solution is. Pure water does not conduct very well because it contains very few ions, but when table salt (NaCl) is dissolved in the water, this solution does conduct well because the solution contains a more abundance of ions. The majority of the ions come from the table salt, chemically names sodium chloride. Because Sodium contains its sodium ions, and these are positive charge and chloride ions which is a negative charge, it is called an ionic substance. Not every substance is made up of ions, one such example is sugar (C12H22O11). Sugar is made up of uncharged particles also called molecules. Although sugar is a substance its molecules do not hold a charge, thus when sugar is dissolved in water, the solution does not conduct electricity, due to the lack of ions in the solution.
Therefore, depending on the ions that make up the compound, the substance would or would not conduct electricity.