Answer:
Va = (MbVb)/Ma
Explanation:
Divide both sides by Ma and voila!
Number of moles : n₂ = 1.775 moles
<h3>Further explanation</h3>
Given
Moles = n₁ = 1.4
Volume = V₁=22.4 L
V₂=28.4 L
Required
Moles-n₂
Solution
Avogadro's hypothesis, at the same temperature and pressure, the ratio of gas volume will be equal to the ratio of gas moles
The ratio of gas volume will be equal to the ratio of gas moles
Input the values :
n₂ = (V₂ x n₁)/V₁
n₂ = (28.4 x 1.4)/22.4
n₂ = 1.775 moles
Answer:
N2O2(g) +O2(g) ===> 2NO2(g)
Explanation:
For a nonelementary reaction, the reaction equation is described as the sum of all the steps involved. All these steps constitute the reaction mechanism. Each step in the mechanism is an elementary reaction. The rate law of the overall reaction involves the rate determining step (slowest step) in the reaction sequence.
Now look at the overall reaction 2NO(g) + O2(g) ---------> 2NO2(g)
The two steps in the mechanism are
2NO(g) --------->N2O2(g) (fast)
N2O2(g) +O2(g) -------> 2NO2(g) (slow)
Summing all the steps and cancelling out the intermediate N2O2(g), we obtain the reaction equation;
2NO(g) + O2(g) ---------> 2NO2(g)
Hence the answer.