Answer: The coefficient for the diatomic oxygen (O2) is 3.
Explanation:
To know the coefficient for the diatomic Oxygen, we need to balance the equation.
Fe + O2 -------> Fe2O3
LHS of the equation; Fe = 1 , O2 = 1
RHS of the equation; Fe = 2 , O = 3
∴ Multiply 'Fe' on the LHS of the equation by 4 and O2 by 3
Doing that will give the balance equation which is;
4 Fe + 3 O2 --------> 2 Fe2O3
The coefficient for the diatomic oxygen (O2) as seen from the equation is 3.
Answer:
4.1 moles of FeCl₃
Explanation:
The reaction expression is given as shown below:
2Fe + 3Cl₂ → 2FeCl₃
Number of moles of Cl₂ = 6.1moles
So;
We know that from the balanced reaction expression:
3 moles of Cl₂ will produce 2 moles of FeCl₃
Therefore 6.1moles of Cl₂ will produce
= 4.1 moles of FeCl₃
The number of moles is 4.1 moles of FeCl₃
Bioluminescence is a chemical reaction that takes place in a living organism when the organism emits light. Bioluminescence doesn't consume or produce heat, hence it can be neither endothermic nor exothermic reaction. It emits a heatless light not heat.
For bioluminescence, it could be said that it is an exoenergetic reaction because it uses energy from a chemical reaction to produce light.
Answer:
%age Yield = 51.45 %
Solution:
Step 1: Convert Kg into g
68.5 Kg CO = 68500 g CO
8.60 Kg H₂ = 8600 g
Step 2: Find out Limiting reactant;
The Balance Chemical Equation is as follow;
CO + 2 H₂ → CH₃OH
According to Equation,
28 g (1 mol) CO reacts with = 4 g (2 mol) of H₂
So,
68500 g CO will react with = X g of H₂
Solving for X,
X = (68500 g × 4 g) ÷ 28 g
X = 9785 g of H₂
It shows 9785 g H₂ is required to react with 68500 g of CO but we are provided with 8600 g of H₂ which is less than required. Therefore, H₂ is provided in less amount hence, it is a Limiting reagent and will control the yield of products.
Step 3: Calculate Theoretical Yield
According to equation,
4 g (2 mol) H₂ reacts to produce = 32 g (1 mol) Methanol
So,
8600 g H₂ will produce = X g of CH₃OH
Solving for X,
X = (8600 g × 32 g) ÷ 4 g
X = 68800 g of CH₃OH
Step 4: Calculate %age Yield
%age Yield = Actual Yield ÷ Theoretical Yield × 100
Putting Values,
%age Yield = 3.54 × 10⁴ g ÷ 68800 g × 100
%age Yield = 51.45 %