Answer:
NH4Br + AgNO3 —> AgBr + NH4NO3
Explanation:
When ammonium bromide and silver(I) nitrate react, the following are obtained as shown below:
NH4Br(aq) + AgNO3(aq) —>
In solution, NH4Br(aq) and AgNO3(aq) will dissociate as follow:
NH4Br(aq) —> NH4+(aq) + Br-(aq)
AgNO3(aq) —> Ag+(aq) + NO3-(aq)
The double displacement reaction will occur as follow:
NH4+(aq) + Br-(aq) + Ag+(aq) + NO3-(aq) —> Ag+(aq) + Br-(aq) + NH4+(aq) + NO3-(aq)
NH4Br(aq) + AgNO3(aq) —> AgBr(s) + NH4NO3(aq)
In this question given concerning the atom's electron, the number of energy sublevels present in the principal energy level n = 4 is to be determined. For this matter, it should be remembered that the number of sublevels of a certain principal energy level is equal to n. For this item, the number of sublevels is also 4. That is s, p, d and f.
a) The total pressure of the system is 1.79 atm
b) The mole fraction and partial pressure of hydrogen is 0.89 and 1.59 atm respectively
c) The mole fraction and the partial pressure of argon is 0.11 and 0.19 atm.
<h3>What is the total pressure?</h3>
We know tat we can be able to obtain the total pressure in the system by the use of the ideal gas equation. We would have from the equation;
PV = nRT
P = pressure
V = volume
n = Number of moles
R = gas constant
T = temperature
Number of moles of hydrogen = 14.2 g/2g = 7.1 moles
Number of moles of Argon = 36.7 g/40 g/mol
= 0.92 moles
Total number of moles = 7.1 moles + 0.92 moles = 8.02 moles
Then;
P = nRT/V
P = 8.02 * 0.082 * 273/100
P = 1.79 atm
Mole fraction of hydrogen = 7.1/8.02 = 0.89
Partial pressure of hydrogen = 0.89 * 1.79 atm
= 1.59 atm
Mole fraction of argon = 0.92 / 8.02
= 0.11
Partial pressure of argon = 0.11 * 1.79 atm
= 0.19 atm
Learn more about partial pressure:brainly.com/question/13199169
#SPJ1
Answer:B
Explanation:
The early theory says that atom Is the smallest indivisible particle. Which was later proven to contain electron neutron and proton