Well to put simple. Isotopes have a different relative amount of neutrons . the more neutrons the more it weighs BUT it still is the same element
Answer:
Option A, The Rutherford experiment proved the Thomson "plum-pudding" model of the atom to be essentially correct.
Explanation:
Thomson's plum pudding model:
Plum pudding model was proposed by J.J Thomson. In Thomson's model, atoms are proposed as sea of positively charge in which electrons are distributed through out.
Result of Rutherford experiment:
As per Rutherford's experiment:
Most of the space inside the atom is empty.
Positively charge of the atom are concentrated in the centre of the atom known as nucleus.
Electrons are present outside the nucleus and revolve around it.
As it is clear that, result of Rutherford experiment did not supported the Thomson model.
Using the equation for boiling point elevation Δt
Δt = i Kb m
we can find the new boiling point T for the solution:
Δt = T - 100∘C
since we know that pure water boils at 100 °C.
We know that the van't Hoff Factor i is equal to 1 because sugar does not dissociate in water.
Also, the value of Ebullioscopic constant Kb for water is listed as 0.512 °C·kg/mol.
The molality m of the solution of 6 moles of sugar dissolved in a kilogram of water can be calculated as
m = 6 moles / 1 kg
= 6 mol/kg
Therefore the new boiling point T would be
T - 100 °C = i Kb m
T = i Kb m + 100 °C.
= (1) (0.512 °C·kg/mol) (6 mol/kg) + 100 °C
= 3.072 °C + 100 °C
= 103.072 °C
The answer is A. the attraction between atoms that enables the formation of chemical compounds.
The simple equation used to calculate work is force multiplied by distance, thus as this is the case increasing the distance by a certain amount, assuming the force applied to the object is constant, the amount of work you are doing on the box for instance pushing it, is going to be greater
Since you are pushing the box with the same force covering a greater distance with the force.