Hydrochloric acid + Sodium hydroxide =Sodium chloride +water
Answer:
35
Explanation:
An atom is neutral, meaning that the number of protons is equal to the number of electrons.
1-pentyne consists of a carbon chain of 5 carbons one with a triple bond. 1-octyne is a carbon chain of 8 carbons with a triple bond at some point. It is known that the longer the carbon chain the higher the boiling point since more energy will be required to break the bonds between carbons. Based on this it is predicted that 1-octyne will have a higher boiling point than 1-pentyne.
The question is incomplete, the complete question is;
Why is a terminal alkyne favored when sodium amide (NaNH2) is used in an elimination reaction with 2,3-dichlorohexane? product. A) The terminal alkyne is more stable than the internal alkyne and is naturally the favored B) The terminal alkyne is not favored in this reaction. C) The resonance favors the formation of the terminal rather than internal alkyne. D) The strong base deprotonates the terminal alkyne and removes it from the equilibrium.
E) The positions of the Cl atoms induce the net formation of the terminal alkyne.
Answer:
E) The positions of the Cl atoms induce the net formation of the terminal alkyne.
Explanation:
In this reaction, sterric hindrance plays a very important role. We know that sodamide is a strong base, it tends to attack at the most accessible position.
The first deprotonation yields an alkene. The strong base attacks at the terminal position again and yields the terminal alkyne. Thus the structure of the dihalide makes the terminal hydrogen atoms most accessible to the base. Hence the answer.
Your answer should be C. bend when passing from air to water. Hope this helps! =^-^= If you need an explanation, just let me know.