Explanation:
Initial energy = final energy + work done by friction
PE = PE + KE + W
mgH = mgh + 1/2 mv² + W
(800)(9.8)(30) = (800)(9.8)(2) + 1/2 (800) v² + 25000
v = 22.1 m/s
Without friction:
PE = PE + KE
mgH = mgh + 1/2 mv²
(800)(9.8)(30) = (800)(9.8)(2) + 1/2 (800) v²
v = 23.4 m/s
Answer: for 1 is number 1
and for 2 is 3
Explanation:
- Mass of the elevator (m) = 570 Kg
- Acceleration = 1.5 m/s^2
- Distance (s) = 13 m
- Let the force be F.
- We know, F = ma,
- Therefore, F = (570 × 1.5) N = 855 N
- Angle between distance and force (θ) = 0°
- We know, work done = F s Cos θ
- Therefore, work done by the cable during this part
- = (855 × 13 × Cos 0°) J
- = (855 × 13 × 1) J
- = 11115 J
<u>Answer</u><u>:</u>
<u>1</u><u>1</u><u>1</u><u>1</u><u>5</u><u> </u><u>J</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
A circuit breaker is an automatically operated electrical switch designed to protect an electrical circuit from damage caused by excess current from an overload or short circuit. Its basic function is to interrupt current flow after a fault is detected.
I hope that this answer helps you