Answers:
a) 
b) 
Explanation:
a) The centripetal acceleration
of an object moving in a uniform circular motion is given by the following equation:
Where:
is the angular velocity of the ball
is the radius of the circular motion, which is equal to the length of the string
Then:
This is the centripetal acceleration of the ball
b) On the other hand, in this circular motion there is a force (centripetal force
) that is directed towards the center and is equal to the tension (
) in the string:

Where
is the mass of the ball
Hence:

This is the tension in the string
If it takes

seconds to reach the car, then the distance

is

.
The bear's distance from the tourist's starting point is

For maximum

, we set the equations equal to each other:



so the distance is
Length of the pipe = 0.39 m
Third harmonic frequency = 1400 Hz
For the third harmonic:
Wavelength = 
The center of the open pipe will host a node and the nearest anti - node from the center will be at the 0.25 × wavelength
Distance from center = 0.25 × wavelength
Distance = 
Plugging the value of the length of the pipe (L) = 0.39 m = 39 cm
Distance = 
Distance from the center to the nearest anti - node = 6.5 cm
Hence, the nearest distance to the anti - node from the center = 6.5 cm
So, option C is correct.
Explanation:
It is given that,
Bandwidth of a laser source, 
(b) Let t is the time separation of sections of sections of the light wave that can still interfere. The time period is given by :



(a) Let h is the coherence length of the source. It is given by :

c is the speed of light

l = 0.0099 m
Hence, this is the required solution.