<span>Transformed into potential energy</span>
Answer:
Therefore,
The frequency heard by the engineer on train 1

Explanation:
Given:
Two trains on separate tracks move toward each other
For Train 1 Velocity of the observer,

For Train 2 Velocity of the Source,

Frequency of Source,

To Find:
Frequency of Observer,
(frequency heard by the engineer on train 1)
Solution:
Here we can use the Doppler effect equation to calculate both the velocity of the source
and observer
, the original frequency of the sound waves
and the observed frequency of the sound waves
,
The Equation is

Where,
v = velocity of sound in air = 343 m/s
Substituting the values we get

Therefore,
The frequency heard by the engineer on train 1

Answer:
41
Explanation:
you subtract the initial velocity which is 10m/s from the final velocity which is 51m/s
Answer:
B. to the right
Explanation:
Given:
- distance of the test charge from +Q, r
- distance of test charge from +2Q, 2r
<u>Force on the test charge due to +Q:</u>

<u>Force on the test charge due to +Q:</u>

Since all the charges are positive here, so they will try to repel the test charge away. And the force due to charge +Q will be greater so initially the test charge will move rightwards away from the +Q charge.