Explanation:
thermal expansion ∝L = (δL/δT)÷L ----(1)
δL = L∝L + δT ----(2)
we have δL = 12.5x10⁻⁶
length l = 200mm
δT = 115°c - 15°c = 100°c
putting these values into equation 1, we have
δL = 200*12.5X10⁻⁶x100
= 0.25 MM
L₂ = L + δ L
= 200 + 0.25
L₂ = 200.25mm
12.5X10⁻⁶ *115-15 * 20
= 0.025
20 +0.025
D₂ = 20.025
as this rod undergoes free expansion at 115°c, the stress on this rod would be = 0
Answer:
Check the explanation
Explanation:
Code
.ORIG x4000
;load index
LD R1, IND
;increment R1
ADD R1, R1, #1
;store it in ind
ST R1, IND
;Loop to fill the remaining array
TEST LD R1, IND
;load 10
LD R2, NUM
;find tw0\'s complement
NOT R2, R2
ADD R2, R2, #1
;(IND-NUM)
ADD R1, R1, R2
;check (IND-NUM)>=0
BRzp GETELEM
;Get array base
LEA R0, ARRAY
;load index
LD R1, IND
;increment index
ADD R0, R0, R1
;store value in array
STR R1, R0,#0
;increment part
INCR
;Increment index
ADD R1, R1, #1
;store it in index
ST R1, IND
;go to test
BR TEST
;get the 6 in R2
;load base address
GETELEM LEA R0, ARRAY
;Set R1=0
AND R1, R1,#0
;Add R1 with 6
ADD R1, R1, #6
;Get the address
ADD R0, R0, R1
;Load the 6th element into R2
LDR R2, R0,#0
;Display array contents
PRINT
;set R1 = 0
AND R1, R1, #0
;Loop
;Get index
TOP ST R1, IND
;Load num
LD R3,NUM
;Find 2\'s complement
NOT R3, R3
ADD R3, R3,#1
;Find (IND-NUM)
ADD R1, R1,R3
;repeat until (IND-NUM)>=0
BRzp DONE
;load array address
LEA R0, ARRAY
;load index
LD R1, IND
;find address
ADD R3, R0, R1
;load value
LDR R1, R3,#0
;load 0x0030
LD R3, HEX
;convert value to hexadecimal
ADD R0, R1, R3
;display number
OUT
;GEt index
LD R1, IND
;increment index
ADD R1, R1, #1
;go to top
BR TOP
;stop
DONE HALT
;declaring variables
;set limit
NUM .FILL 10
;create array
ARRAY .BLKW 10 #0
;variable for index
IND .FILL 0
;hexadecimal value
HEX .FILL x0030
;stop
.END
Answer:
(a) 3.455
(b) 21.143
(c) 16.36L/min
Explanation:
In this question, we’d be providing solution to the working process of a refrigerator given the data in the question.
Please check attachment for complete solution and step by step explanation
Answer: For the center plate to remain stationed in one position without rotating, the bottom plate has to move to the left at a speed of 2m/s, so as to cancel the force acting on it from the top.
The center plate will not move when the bottom plate is moving left in a speed of 2m/s to counter the speed of the top plate, because a body will continue to be at rest if all the forces acting towards the body are equal. The center plate will be at rest because we have directed equal force from the top and bottom of the plate.