Answer:
1.56 mol H₂
Explanation:
Mg₃(Si₂O₅)₂(OH)₂
<em>There are 4 Si moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>. With that in mind we can <u>calculate how many Mg₃(Si₂O₅)₂(OH)₂ moles are there in the sample</u>, using the <em>given number of silicon moles</em>:
- 3.120 mol Si * = 0.78 mol Mg₃(Si₂O₅)₂(OH)₂
Then we can <u>convert Mg₃(Si₂O₅)₂(OH)₂ moles into hydrogen moles</u>, keeping in mind that <em>there are 2 hydrogen moles per Mg₃(Si₂O₅)₂(OH)₂ mol</em>:
- 0.78 mol Mg₃(Si₂O₅)₂(OH)₂ * 2 = 1.56 mol H₂
Answer:
The metals are to the left of the line (except for hydrogen, which is a nonmetal), the nonmetals are to the right of the line, and the elements immediately adjacent to the line are the metalloids.
Hope this helped
Answer:
<h2>It makes the current viable enough to pass through an exterior wire.</h2>
Explanation:
Electrochemical cells primarily comprise of two half-cells. These half-cells assist in isolating the oxidation and reduction half-reactions. These two reactions are linked by a wire which allows the current to move from one edge to the other. The oxidation at the anode and the reduction take place at the cathode and the addition of a salt bridge helps in completing the circuit and permits the current to flow and leads to the generation of electricity.
Answer:According to Boyle's Law, the volume of a gas is inversely proportional to the pressure of a gas. Therefore, increasing the volume has the same effect as decreasing the pressure. If the volume in which a gas reaction takes place is DECREASED, the reaction will shift toward the side with fewer moles of GAS.
Explanation: