1.Start with the number of grams of each element, given in the problem.
2.Convert the mass of each element to moles using the molar mass from the periodic table.
3.Divide each mole value by the smallest number of moles calculated.
4.Round to the nearest whole number. This is the mole ratio of the elements and is.
The heat of the reaction, in kJ, when 4.18 g of the hydrocarbon are combusted 775.70 kJ.
The heat energy is given as :
q = m c ΔT + Ccal ΔT
q = ( 974 g× 4.184 ×6.9) + 624 ×6.9
q = 32424.59 J
moles of hydrocarbon = 0.0418 mol
heat of combustion = 32424.59 J / 0.0418 mol
= 775707.89 J
= 775.70 kJ
Thus, A 4.18 g sample of a hydrocarbon is combusted in a bomb calorimeter that contains 974 g of water. the temperature of the water increases by 6.9 °C when the hydrocarbon is combusted. the calorimeter constant for the calorimeter was determined to be 624 J/°C. what is the heat of the reaction is 775.70 kJ.
To learn more about calorimeter here
brainly.com/question/28943378
#SPJ4
In the given case, the scientist should use a circle graph or pie chart.
One can dissect a circle into smaller segments, a component of the circle is known as an arc and an arc is named on the basis of its angle. A pie chart, or a circle graph, is used to visualize data and information.
A circle graph is generally used to demonstrate the outcomes of an examination in a proportional way. In a circle graph, the arcs are proportional to how many percents of the population gave a particular answer.
Answer:
2.79 °C/m
Explanation:
When a nonvolatile solute is dissolved in a pure solvent, the boiling point of the solvent increases. This property is called ebullioscopy. The temperature change (ΔT) can be calculated by:
ΔT = Kb*W*i
Where Kb is the ebullioscopy constant for the solvent, W is the molality and i is the van't Hoff factor.
W = m1/(M1*m2)
Where m1 is the mass of the solute (in g), M1 is the molar mass of the solute, and m2 is the mass of the solvent (in kg).
The van't Hoff factor represents the dissociation of the elements. For an organic molecule, we can approximate i = 1. Thus:
m1 = 2.00 g
M1 = 147 g/mol
m2 = 0.0225 kg
W = 2/(147*0.0225)
W = 0.6047 mol/kg
(82.39 - 80.70) = Kb*0.6047*1
0.6047Kb = 1.69
Kb = 2.79 °C/m
Answer: Yes, this is true.
Explanation: It only takes 88 days for Mercury to orbit around the sun. No other planet travels around the sun faster.