Answer:
1.06 V
Explanation:
The standard reduction potentials are:
Ag^+/Ag E° = 0.7996 V
Ni^2+/Ni E° = -0.257 V
The half-cell and cell reactions for Ni | Ni^2+ || Ag^+ | Ag are
Ni → Ni^2+ + 2e- E° = 0.257 V
<u>2Ag^+ 2e- → 2Ag </u> <u>E° = 0.7996 V
</u>
Ni + 2Ag^+ → Ni^2+ + 2Ag E° = 1.0566 V
To three significant figures, the standard potential for the cell is 1.06 V
.
Answer: 0.14 kg
Explanation:
Gourmet chocolate candy contains 7.00 g of dietary fat in each 22.7-g piece
That is 1 piece of candy weighs 22.7 g and contains 7.00 g of dietary fat
Converting the mass in pounds to kg
1 lb = 0.45 kg = 450 grams (1kg=1000g)
Number of pieces = 
1 piece contains = 7 g of dietary fat
Thus 30 pieces would contain =
of dietary fat
1 g = 0.001 kg
Thus 140 grams =
Thus 0.14 kg of dietary fat are in a box containing 1.00 lb of candy.
The mass, in grams, of the sample of methanol (CH₃OH) is 64 grams.
<h3>How we calculate mass from moles?</h3>
Mass of any substance can be calculated by using moles as:
n = W/M, where
W = required mass
M = molar mass
In the question that:
Moles of methanol = 2mole
Molar mass of methanol = 32g/mole
On putting these values in the above equation, we get
W = n × M
W = 2mole × 32g/mole = 64g
Hence, 64 grams is the mass of the sample.
To know more about moles, visit the below link:
brainly.com/question/15374113
(A) gas to liquid
is most likely to take place. This change from gas to liquid is the forming of water molecules. Gas particles have the most energy and therefore speed up the most, whereas solids have the least amount of energy and slow down. The intermediate step from gas to solid is a liquid. We call this process from gas to liquid condensation.
2NaClO₃ → 2NaCl + 3O₂
mole ratio of NaClO₃ to O₂ is 2 : 3
∴ if moles of NaClO₃ = 12 mol
then moles of O₂ =
= 18 mol
Mass of O₂ = mol of O₂ × molar mass of O₂
= 18 mol × 16 g/mol
= 288 g
So I wasn't sure which equation to use since you did not specify so I just used the decomposition reaction. If you should have used another reaction then just follow the same steps and you'll get your answer.