When the image distance is positive, the image is on the same side of the mirror as the object, and it is real and inverted. When the image distance is negative, the image is behind the mirror, so the image is virtual and upright. A negative m means that the image is inverted. Positive means an upright image.
We have a problem about conservation and velocity, we will find that it does affect the speed of the ball, increasing it by 1.7m/s.
There is something called momentum, which we can define as the "quantity of movement", and we can simply write as the product between velocity and mass.
The momentum is conservative, then we have conservation of momentum.
This means that when you run whit the ball in your hands, the momentum of the ball will be equal to your velocity times the mass of the ball, and this must conserve after you throw the ball.
Now with this idea in mind, this means that if you run with a velocity V, and you throw the ball with a velocity V', the velocity of the ball when it leaves your hand will be:
V + V'.
So, if you run with a velocity of 1.7m/s forward and you throw the ball (assuming in the same direction) the speed of the ball will be 1.7m/s larger than if you were to throw it standing still.
If you want to learn more, you can read:
brainly.com/question/13639113
Answer:
1. Dry Beans - 591.75 kg/m^3
2. Flour - 593 kg/m^3
3. Wax - 900 kg/m^3
4. Wet sand - 2039 kg/m^3
5. Chalk - 2499 kg/m^3
6. Talcum Powder - 2776 kg/m^3
7. Copper - 8960 kg/m^3
Explanation:
Make sure your units are the same
Answer:I believe it is D I might be wrong
Explanation:
After reading this whole question, I feel like I've already
earned 5 points !
-- Two satellites at the same distance, different masses:
The forces of gravity between two objects are directly
proportional to the product of the objects' masses. In
other words, the gravitational forces between the Earth
and an object on its surface are proportional to the mass of
the object. In other words, people with more mass weigh more
on the Earth, and the Earth weighs more on them.
If the satellites are both at the same distance from Earth,
then the Earth pulls on the one with more mass with greater
force, and also the one with more mass pulls on the Earth
with greater force.
-- Two satellites with the same mass, at different distances:
The forces of gravity between two objects are inversely
proportional to the square of the distance between them.
In other words, the gravitational
forces between the Earth
and an object are inversely proportional
to the square of
the distance between the object and the center of the Earth.
If
the satellites both have the same mass, then the Earth
pulls on the nearer one with greater force, and also the
nearer one pulls on the Earth with greater force.
-- Resistor in a circuit when the voltage changes:
The resistance depends on how the resistor was manufactured.
Its resistance is marked on it, and doesn't change. It remains
the same whether the voltage changes, the current changes,
the time of day changes, the cost of oil changes, etc.
If you increase the voltage in the circuit where that resistor is
installed, the current through the resistor increases. If the current
remains constant, then you can be sure that somebody snuck over
to your circuit when you weren't looking, and they either installed
another resistor in series with the original one to make the total
resistance bigger, or else they snipped the original one out of the
circuit and quickly connected one with more resistance in its place.