Cubic centimeters for the volume of a solid.
Liters for volume of a liquid.
Finding acceleration= final speed-initial speed/time taken (or A=V-U\T)
Finial speed= 27.8s
Initial speed= 0s
Time taken= 5.15
So..
27.8-0/5.15= 5.40m/s (rounded to two decimal places)
Answer:
.
Explanation:
The frequency
of a wave is equal to the number of wave cycles that go through a point on its path in unit time (where "unit time" is typically equal to one second.)
The wave in this question travels at a speed of
. In other words, the wave would have traveled
in each second. Consider a point on the path of this wave. If a peak was initially at that point, in one second that peak would be
How many wave cycles can fit into that
? The wavelength of this wave
gives the length of one wave cycle. Therefore:
.
That is: there are
wave cycles in
of this wave.
On the other hand, Because that
of this wave goes through that point in each second, that
wave cycles will go through that point in the same amount of time. Hence, the frequency of this wave would be
Because one wave cycle per second is equivalent to one Hertz, the frequency of this wave can be written as:
.
The calculations above can be expressed with the formula:
,
where
represents the speed of this wave, and
represents the wavelength of this wave.
Answer:
T = 0.017s
Explanation:
period is the time it takes a particle to make one oscillation
An electric current is periodic in nature
The current reaches 3.8A ten times.
So there must have been 10 cycles (10 periods) in 0.17s. let 'T' be the period:

t is the total time interval
n is the number of oscillations

10T = 0.17
T = 0.17/10 = 0.017s
Fish swimming forward in the water, the water gets pushed backward because the fish moving forward is forcing the water to move backward, the motion forward and backward are the same, they are opposite and equal.