If the desk doesn't move, then it's not accelerating.
If it's not accelerating, then the net force on it is zero.
If the net force on it is zero, then any forces on it are balanced.
If there are only two forces on it and they're balanced, then they have equal strengths, and they point in opposite directions.
So the friction on the desk must be equal to your<em> 245N</em> .
Answer:
v_average = 15 m / s
Explanation:
The average speed can be found in two ways,
* taking the distance traveled and divide it by the time spent
* taking the velocities in each time interval and then finding the weighted average by the time fraction
v_average = 1 / t_total ∑
vi ti
Let's apply this last equation
Total time is
t = t₁ + t₂
t = 10 + 10 = 20 min
v_average = 10/20 10 + 10/20 20
v_average = 10/2 + 20/2
v_average = 15 m / s
Answer:
The change in temperature is
Explanation:
From the question we are told that
The temperature coefficient is 
The resistance of the filament is mathematically represented as
![R = R_o [1 + \alpha \Delta T]](https://tex.z-dn.net/?f=R%20%20%3D%20%20R_o%20%5B1%20%2B%20%5Calpha%20%20%5CDelta%20T%5D)
Where
is the initial resistance
Making the change in temperature the subject of the formula
![\Delta T = \frac{1}{\alpha } [\frac{R}{R_o} - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BR%7D%7BR_o%7D%20-%201%20%5D)
Now from ohm law

This implies that current varies inversely with current so

Substituting this we have
![\Delta T = \frac{1}{\alpha } [\frac{I_o}{I} - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BI_o%7D%7BI%7D%20-%201%20%5D)
From the question we are told that

Substituting this we have
![\Delta T = \frac{1}{\alpha } [\frac{I_o}{\frac{I_o}{8} } - 1 ]](https://tex.z-dn.net/?f=%5CDelta%20T%20%20%3D%20%5Cfrac%7B1%7D%7B%5Calpha%20%7D%20%5B%5Cfrac%7BI_o%7D%7B%5Cfrac%7BI_o%7D%7B8%7D%20%7D%20-%201%20%5D)
=> 
Answer:
a) v = 19,149.6 m/s
b) f = 95%
c) t = 346.5min
Explanation:
First put all values in metric units:

The equation of motion you need is:
where
is the final velocity, a is acceleration and t is time in hours.
Since the spaceship starts from 0 velocity:

Next, you need to calculate the distances traveled on each interval, considering that both starting and final intervals travel the same distance because the acceleration and time are equal. For this part you need the next motion equation:

solving for first and last interval:
Since the spaceship starts and finish with 0 velocity:

Then the ship traveled
at constant speed, which means that it traveled:

Which in percentage is 95% of the trip.
to calculate total time you need to calculate the time used during constant speed:

That added to the other interval times:
