<span>The answer is c. in the photic zone. Plankton is a diverse group of organisms that live in the water and not capable of active swimming. Phytoplankton includes a diverse autotrophic group of organisms. Since they are autotrophic, they produce their own food in the process of photosynthesis. Light is important for photosynthesis and phytoplankton tends to live in the photic zone which receives sunlight.</span>
Answer:
Explanation:
Initial angular velocity ω₁ = 0 , final angular velocity ω₂ = 75.9 rad /s
angle rotated = θ
= 37 x 2π
= 74 π
The formula for angular velocity
ω₂² = ω₁² + 2αθ , α is angular acceleration
75.9² = 0 + 2 α x 74 π
α = 75.9² / 2 x 74 π
= 12.396 rad / s²
The concept of this problem is the Law of Conservation of Momentum. Momentum is the product of mass and velocity. To obey the law, the momentum before and after collision should be equal:
m₁ v₁ + m₂v₂ = m₁v₁' + m₂v₂', where
m₁ and m₂ are the masses of the proton and the carbon nucleus, respectively,
v₁ and v₂ are the velocities of the proton and the carbon nucleus before collision, respectively,
v₁' and v₂' are the velocities of the proton and the carbon nucleus after collision, respectively,
m(164) + 12m(0) = mv₁' + 12mv₂'
164 = v₁' + 12v₂' --> equation 1
The second equation is the coefficient of restitution, e, which is equal to 1 for perfect collision. The equation is
(v₂' - v₁')/(v₁ - v₂) = 1
(v₂' - v₁')/(164 - 0) = 1
v₂' - v₁'=164 ---> equation 2
Solving equations 1 and 2 simultaneously, v₁' = -138.77 m/s and v₂' = +25.23 m/s. This means that after the collision, the proton bounced to the left at 138.77 m/s, while the stationary carbon nucleus move to the right at 25.23 m/s.
The tectonic plates are made up of Earth's crust and the upper part of the mantle layer underneath. Together the crust and upper mantle are called the lithosphere. hope this helps :)