Answer: Sanjay can burn 100 more calories every 30 minutes if he chooses to lift weights instead of watching tv
Explanation: 133-33= 100 calories (says in article and i just answered it)
Answer:
a) 
b) 
Explanation:
From the question we are told that:
Density 
Velocity of wind 
Dimension of rectangle:50 cm wide and 90 cm
Drag coefficient 
a)
Generally the equation for Force is mathematically given by



Therefore Torque



b)
Generally the equation for torque due to weight is mathematically given by

Where

Therefore




Acceleration is the rate of change of velocity as a function of time. For example a car traveling at 50 km/hr starts to accelerate, 10 seconds after, its speed changes to 100 km/hr then the acceleration of the car during the time can be calculated as below: initial speed = 50 km/hr.
Answer:
No sand doesn't stay sand forever.
Explanation:
- We may have a thought that the sand we see on the beach areas are always the same one for eternal, but it is not true.
- Due to different activities like beach nourishment, sand replenishment etc. the sand in the beach areas are changed and replaced.
- If the sand remained there for long time, it also affects the sand eating organisms and plants.