Answer:
122.735 behind converging lens ; 2.16
Explanation:
Given tgat:
Object distance, u = 29 cm
Image distance, v =
Focal length, f = - 19 (diverging lens)
Mirror formula :
1/u + 1/v = 1/f
1/29 + 1/v = - 1/19
1/v = - 1/19 - 1/29
1/v = −0.087114
v = −11.47916
v = -11.48
Second lens
Object distance :
u = 11.48 + 11 = 22.48 cm
1/v = 1/19 - 1/22.48
1/v = 0.0081475
v = 1 / 0.0081475
v = 122.735 cm
122.735 behind second lens
Magnification, m
m = m1 * m2
m = - v / u
Lens1 :
m1 = -11.48 / 29 = - 0.3958620
m2 = - 122.735 / 22.48 = - 5.4597419
Hence,
- 0.3958620 * - 5.4597419 = 2.16
Biology involves living systems that interact with each other and with the environment. Like chemical processes, biological processes involve the transfer or sharing of electrons among atoms and the interaction of atoms and molecules with electromagnetic energy.
Answer:
For the bird moving in a straight line, the kinetic energy is one-half the product of the mass and the square of the speed: Ek=12mu2.
Gravitational potential energy=mass of object x gravitational field strength on earth(9.8 usually rounded to 10) x the height the object is held at
Therefore if two objects were held at the same height, the object with more mass(the heavier object) will fall faster because it's gravitational potential energy is greater than that of the lighter object