What are the shapes that you are referring to?
A digit is a number in one of the places, so for example the number 54 has two digits; a tens place digit (5) and a ones place digit (4).
Say the mystery number is a two digit number = xy
* that's not x times y but two side by side digits.
Info given:
<span>the sum of the digits of a two-digit number is 6
x + y = 6 </span>
<span>if the digits are reversed, yx the difference between the new number and the original number is 18.
**To obtain the number from digits you must multiply by the place and add the digits up. (Example: 54 = 10(5) + 1(4))
Original number = 10x + y
Reversed/New number = 10y + x
Difference:
10y + x - (10x + y) = 18
9y - 9x = 18
9(y - x) = 18
y - x = 18/9
y - x = 2
Now we have two equations in two variables
</span>y - x = 2
<span>x + y = 6
Re-write one in terms of one variable for substitution.
y = 2 + x
sub in to the other equation to combine them.
x + (2 + x) = 6
2x + 2 = 6
2x = 6 - 2
2x = 4
x = 2
That's the tens digit for the original number. Plug this value into either of the equations to obtain y, the ones digit.
2 + y = 6
y = 4
number "xy" = 24
</span>
If I know I will give it sorry
we are given
In a scale
125 feet represents 0.125 inches
so, we can write as
125 feet = 0.125 inches
since, we need to find for 1 feet
so, we can divide both sides by 125 to get 1 on left side


so,
1 feet represents 0.001 inches
so, option-A..........Answer
Answer:
Step-by-step explanation:
This question is asking us to find where sin(2x + 30) has a sin of 1. If you look at the unit circle, 90 degrees has a sin of 1. Mathematically, it will be solved like this (begin by taking the inverse sin of both sides):
![sin^{-1}[sin(2x+30)]=sin^{-1}(1)](https://tex.z-dn.net/?f=sin%5E%7B-1%7D%5Bsin%282x%2B30%29%5D%3Dsin%5E%7B-1%7D%281%29)
On the left, the inverse sin "undoes" or cancels the sin, leaving us with
2x + 30 = sin⁻¹(1)
The right side is asking us what angle has a sin of 1, which is 90. Sub that into the right side:
2x + 30 = 90 and
2x = 60 so
x = 30
You're welcome!