Answer:
The conservation of energy principle states that energy can neither be destroyed nor created. Instead, energy just transforms from one form into another. So what exactly is energy transformation? Well, as you might guess, energy transformation is defined as the process of changing energy from one form to another. There are so many different kinds of energy that can transform from one form to another. There is energy from chemical reactions called chemical energy, energy from thermal processes called heat energy, and energy from charged particles called electrical energy. The processes of fission, which is splitting atoms, and fusion, which is combining atoms, give us another type of energy called nuclear energy. And finally, the energy of motion, kinetic energy, and the energy associated with position, potential energy, are collectively called mechanical energy. That sounds like quite a lot, doesn't it? Well it is, but don't worry, it's actually all pretty easy to remember. Next, we'll explore all of these kinds of possible transformations in more detail. Different Types of Energy Transformations Chemical energy is the energy stored within a substance through the bonds of chemical compounds. The energy stored in these chemical bonds can be released and transformed during any type of chemical reaction. Think of when you're hungry. When you eat a piece of bread to satisfy this hunger, your body breaks down the chemical bonds of the bread and uses it to supply energy to your body. In this process, the chemical energy is transformed into mechanical energy, which you use to move, and which we'll cover in more detail in a moment. It also transforms it into thermal energy, which is created through the metabolic processes in your body to generate heat. Most of the time, chemical energy is released in the form of heat, and this transformation from chemical energy to heat, or thermal energy, is called an exothermic reaction. Next, there are two main types of mechanical energy: kinetic energy and potential energy. Kinetic energy is the energy associated with the motion of an object. Therefore, any object that moves has kinetic energy. Likewise, there are two types of potential energy: gravitational potential energy and elastic potential energy. Gravitational potential energy is associated with the energy stored by an object because of its location above the ground. Elastic potential energy is the energy stored by any object that can stretch or compress. Potential energy can be converted to kinetic energy and vice versa. For example, when you do a death-defying bungee jump off of a bridge, you are executing a variety of energy transformations. First, as you prepare to jump, you have gravitational potential energy - the bungee cord is slack so there is no elastic potential energy. Once you jump, you convert this gravitational potential energy into kinetic energy as you fall down. At the same time, the bungee cord begins to stretch out. As the cord stretches, it begins to store elastic potential energy. You stop at the very bottom when the cord is fully stretched out, so at this point, you have elastic potential energy. The cord then whips you back up, thereby converting the stored elastic potential energy into kinetic energy and gravitational potential energy. The process then repeats
Explanation:
here u go :P
The alkaline earth metals (the second group) because their ion charge is +2
Answer:
3.11 is the pH of the buffer
Explanation:
The pH of a buffer is obtained using H-H equation:
pH = pKa + log [Conjugate base] / [Weak acid]
<em>Where pH is the pH of the buffer, pKa = -log Ka = 3.14 for the citric buffer and [] could be taken as the moles of each species.</em>
The citric acid,HX (Weak acid), reacts with NaOH to produce sodium citrate, NaX (weak base) and water:
HX + NaOH → H2O + NaX
That means the moles of NaOH added = Moles of sodium citrate produced
And the resulitng moles of HX = Initial moles - Moles NaOH added
<em>Moles HX and NaX:</em>
Moles NaOH = 0.100L * (0.65mol / L) = 0.065 moles NaOH = Moles NaX
Moles HX = 0.300L * (0.45mol / L) = 0.135 moles HX - 0.065 moles NaOH = 0.070 moles HX
Replacing in H-H equation:
pH = 3.14 + log [0.065mol] / [0.070mol]
pH = 3.11 is the pH of the buffer
Answer: The faster stuff or an object moves, the more energy it has. ... Energy can be transformed from one way to another. Kinetic energy can be told apart from the various forms of potential energy. A demonstration is: toaster transforms electrical energy into thermal energy.
Explanation: An energy transformation is the change of energy from way to another. Energy transformations occur everywhere every second. There are many different forms of energy such as electrical, thermal, nuclear, mechanical, and chemical. Because the law of conservation of energy states that energy is always conserved in the world and simply changes from one form to another, many energy transformations are taking place all the time
Answer:
Density is a value for mass, such as kg, divided by a value for volume, such as m3. Density is a physical property of a substance that represents the mass of that substance per unit volume. It is a property that can be used to describe a substance. We calculate as follows:
Volume = 60.0 g ( 1 mL / 0.70 g ) = 85.71 mL
Therefore, the correct answer is option B.
Explanation: