Let us assume that there is a 100g sample of Opal. The masses of each element will be:
29.2g Si
33.3g O
37.5g H2O
Now we divide each constituent's mass by its Mr to get the moles present
Si: (29.2 / 28) = 1.04
O: (33.3 / 16) = 2.08
H2O: (37.5 / 18) = 2.08
Now we divide by the smallest number and obtain:
Si: 1
O: 2
H2O: 2
Thus, the empirical formula of Opal is:
SiO2 . 2H2O
Answer:
1. The product has a higher Rf value on a silica gel TLC plate because it is more polar than the starting methyl benzoate.
2. False
3. True
Explanation:
In chromatography, there is a stationary phase and a mobile phase. The ratio of the distance moved by a component and the distance moved by the solvent gives the retention factor (Rf).
Since silica gel is a polar solvent, it will retain the more polar product methyl m-nitrobenzoate compared to the methyl benzoate starting material.
In comparing the electrophillic aromatic substitution of m-nitrobenzoate and methyl benzoate, we must remember that the presence of electron withdrawing groups (such as -NO2 and -CHO) on the aromatic compound deactivates the compound towards electrophillic aromatic substitution hence, methyl m-nitrobenzoate is less reactive than methyl benzoate in Electrophilic Aromatic Substition and Methyl benzoate is less reactive than benzene in Electrophilic Aromatic Substition
Answer:
Burning of paper and log of wood.
Digestion of food.
Boiling an egg.
Chemical battery usage.
Electroplating a metal.
Baking a cake.
Milk going sour.
Various metabolic reactions that take place in the cells.
hope this helps!
add me/ mark as brainiest if you can<3
Some forms of transportation are meant for small short trips while other forms of transportation are meant for big long trips
Answer:

Explanation:
In a single-displacement reaction, one element exchanges partners with another element in a compound.

This is a single-displacement reaction, because the element Fe exchanges partners with H in HCl.

This is not a single-displacement reaction, because it is a reaction between two compounds.
This is a double displacement reaction in which the K⁺ and H⁺ cations change partners with the anions.

This is not a single-displacement reaction. It is another double displacement reaction, in which the Na⁺ and H⁺ cations change partners with the anions.

This is a single-displacement reaction, because the element Ca exchanges partners with H in H₂O.
are not single-displacement reactions.