Answer : The correct option is, (c) 79.62
Explanation :
The formula used for percent humidity is:
..........(1)
The formula used for relative humidity is:
...........(2)
where,
= partial pressure of water vapor
= vapor pressure of water
p = total pressure
First we have to calculate the partial pressure of water vapor by using equation 2.
Given:


Relative humidity = 80 % = 0.80
Now put all the given values in equation 2, we get:


Now we have to calculate the percent humidity by using equation 1.


Therefore, the percent humidity is 79.62 %
Answer:
An innate, typically fixed pattern of behavior in animals in response to certain stimuli.
Answer:
No.
Explanation:
The reason comes the <em>Law of Conservation of Mass</em>.
In an ordinary chemical reaction, <em>you cannot create or destroy atoms</em>.
So, you must have as many atoms at the beginning of a reaction (in the reactants) as at the end (in the products)
We use this principle to balance chemical equations.
For example, the equation for the formation of water from hydrogen and oxygen is
2H₂ + O₂ ⟶ 2H₂O
There are four atoms of H and two of O both before and after the reaction.
We are given with the initial volume of the substance and the molarity. The first thing that needs to be done is to multiply the equation in order to obtain the number of moles such as shown below.
number of moles = (40 mL) x (1 L / 1000 mL) x (0.3433 moles / L)
number of moles = 0.013732 moles
To get the value of the molarity of the diluted solution, we divide the number of moles by the total volume.
molarity = (0.013732 moles) / (750 mL / 1000 mL/L) = 0.0183 M
Similarly, we can solve for the molarity by using the equation,
M₁V₁ = M₂V₂
Substituting the known values in the equation,
(0.3433 M)(40 mL) = M₂(750 mL)
M₂ = 0.0183 M
Answer:
A, C and D are correct.
Explanation:
Hello.
In this case, since the relationship between the vapor pressure of a solution is directly proportional to the mole fraction of the solvent and the vapor pressure of the pure solvent as stated by the Raoult's law:

Since the solute is not volatile, the mole fraction of the solute is not taken into account for vapor pressure of the solution, therefore A is correct whereas B is incorrect.
Moreover, since the higher the vapor pressure, the weaker the intermolecular forces due to the fact that less more molecules are like to change from liquid to vapor and therefore more energy is required for such change, we can evidence that both C and D are correct.
Best regards.