pH of 0.048 M HClO is 4.35.
<u>Explanation:</u>
HClO is a weak acid and it is dissociated as,
HClO ⇄ H⁺ + ClO⁻
We can write the equilibrium expression as,
Ka = ![$\frac{[H^{+}] [ClO^{-}] }{[HClO]}](https://tex.z-dn.net/?f=%24%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%20%5BClO%5E%7B-%7D%5D%20%20%7D%7B%5BHClO%5D%7D)
Ka = 4.0 × 10⁻⁸ M
4.0 × 10⁻⁸ M = 
Now we can find x by rewriting the equation as,
x² = 4.0 × 10⁻⁸ × 0.048
= 1.92 × 10⁻⁹
Taking sqrt on both sides, we will get,
x = [H⁺] = 4.38 × 10⁻⁵
pH = -log₁₀[H⁺]
= - log₁₀[ 4.38 × 10⁻⁵]
= 4.35
In this item, we are simply to find the ions that may bond and are able to form a formula unit. We are also instructed to give out their name. There are numerous possible combinations of ions to form a compound. Some answers are given in the list below.
1. Na⁺ , Cl⁻ , NaCl ---> sodium chloride (this is most commonly known as table salt)
2. C⁴⁺ , O²⁻ , CO₂ ---> carbon dioxide
3. Al³+ , Cl⁻ , AlCl₃ ----> aluminum chloride
4. Ca²⁺ , Cl⁻ , CaCl₂ ---> calcium chloride
5. Li⁺ , Br⁻ , LiBr ---> lithium bromide
6. Mg³⁺ , O²⁻ , Mg₂O₃ ----> magnesium oxide
7. K⁺ , I⁻ , KI ---> potassium iodide
8. H⁺ , Cl⁻ , HCl --> hydrogen chloride
9. H⁺ , Br⁻ , HBr ----> hydrogen bromide
10. Na⁺ , Br⁻ , NaBr ---> sodium bromide
I believe it would weigh less if it’s blown up with helium because helium is lighter than air
Salt dissolving in a glass of water, using electricity to break down water into hydrogen and oxygen, rust forming on an iron fence and gas burning on a stove.