The correct answer is high temperature solids
Answer:

FCI=88.0818 MM≅88 MM
Explanation:
Empirical correlation based on the work of Bridgwater and Mumford (1979):
For Liquid or solid phase Plants:
F<60,000 tonne/yr Eq (1)
F≥60,000 tonnes/yr Eq (2)
Where:
N is the number of functional units
F is the process throughput tonnes/yr
In our case F=40,000 tonne/yr <60,000 tonne/yr, We are going to use Eq (1)
F<60,000 tonne/yr
N=8, F=40,000 tonne/yr

FCI=88.0818 MM≅88 MM
Answer: Significant figures in a measurement are all measured digits, and one estimated digit
Significant figures communicate the level of precision in measurements Significant figures are an indicator of the certainty in measurements.
Explanation:
Significant figures : The figures in a number which express the value or the magnitude of a quantity to a specific degree of accuracy or precision is known as significant digits.
The significant figures of a measured quantity are defined as all the digits known with certainty and the first uncertain or estimated digit.
Rules for significant figures:
1. Digits from 1 to 9 are always significant and have infinite number of significant figures.
2. All non-zero numbers are always significant.
3. All zero’s between integers are always significant.
4. All zero’s preceding the first integers are never significant.
5. All zero’s after the decimal point are always significant.
If the ion is a cation, it has a positive charge because it LOST electrons. If its an anion, then it has a negative electron because it GAINED electrons.