Answer:
Molarity = 1.93 mol.L⁻¹
Explanation:
Molarity is the unit of concentration used to specify the amount of solute in given amount of solution. It is expressed as,
Molarity = Moles / Volume of Solution ----- (1)
Data Given;
Mass = 11.3 g
Volume = 100 mL = 0.10 L
First calculate Moles for given mass as,
Moles = Mass / M.mass
Moles = 11.3 g / 58.44 g.mol⁻¹
Moles = 0.1933 mol
Now, putting value of Moles and Volume in eq. 1,
Molarity = 0.1933 mol ÷ 0.10 L
Molarity = 1.93 mol.L⁻¹
LD50 is defined as the lethal dose 50% which describes the amount of material required to kill 50% of the testing population. It is given in units of mg of chemical per kg of bodyweight of the recipient.
Comparing hydrogen peroxide and acetic acid, we see that peroxide has a lower LD50 of 900 mg/kg, with acetic acid having LD50 = 3310 mg/kg. When comparing LD50 values, the smaller value will be the more toxic compound. What this means is that in this case, a smaller amount of peroxide is required to kill 50% of the testing population compared to acetic acid.
Therefore, 3% hydrogen peroxide is more hazardous to consume.
Answer:
28atm
Explanation:
Using Gay lussac's law equation as follows:
P1/T1 = P2/T2
Where;
P1 = initial pressure (atm)
T1 = initial temperature (K)
P2 = final pressure (atm)
T2 = final temperature (K)
Based on the information provided in this question;
P1 = 30.0 atm, T1 = 30.0°C, P2 = ?, T2 = 10.0°C
NOTE: Absolute temperature i.e. Kelvin is required for this law
T1 = 30°C + 273K = 303K
T2 = 10°C + 273K = 283K
Using P1/T1 = P2/T2
30/303 = P2/283
Cross multiply
P2 × 303 = 30 × 283
303P2 = 8490
P2 = 8490/303
P2 = 28.02
New pressure of the gas = 28atm
Keeping in mind a total ignorance of both the health benefits of these teas, and the interaction between milk and antioxidants, I believe that it is possible that milk could hinder these benefits.
Tea is usually a hot beverage. Milk, when added to this beverage, would easily dissolve. When a solute (milk) dissolves in a solvent (tea), the chemical properties of the resulting solution can become quite distinct from both of the original substances. It seems possible that the same chemical properties of tea that make it healthy could be altered by the addition of milk.
Answer: (i) F = 2
(ii) F = 3
(iii) F = 2
Explanation:
We would be applying the famous Gibbs Phase Rule to explaining this problem;
By applying the formula;
F+P = C +2
Where P = this represent the phase
F = this is called the degree of freedom
C = this represent the component in the system
Ok let us begin;
(i). from this we can see that there are 2 components i.e. (water + ethanol) and the phase in question is a vapor phase + liquid phase.
So from the formula;
F = C-P+2
F = 2 – 2 + 2 = 2
Therefore, F = 2.
(ii). Also, from the statement, we can figure there are 3 components, while the phases are two like the previous one above, i.e. liquid + vapor
F = 3 – 2 + 2 = 5 – 2 = 3
F = 3
(iii). From this statement, we can figure there are 3 components, and the phases are 3 i.e. (2 liquid phases + 1 vapor phase)
From the formula;
F = 3 – 3 + 2 = 0 + 2
F = 2