Answer:
At 430.34 K the reaction will be at equilibrium, at T > 430.34 the
reaction will be spontaneous, and at T < 430.4K the reaction will not
occur spontaneously.
Explanation:
1) Variables:
G = Gibbs energy
H = enthalpy
S = entropy
2) Formula (definition)
G = H + TS
=> ΔG = ΔH - TΔS
3) conditions
ΔG < 0 => spontaneous reaction
ΔG = 0 => equilibrium
ΔG > 0 non espontaneous reaction
4) Assuming the data given correspond to ΔH and ΔS
ΔG = ΔH - T ΔS = 62.4 kJ/mol + T 0.145 kJ / mol * K
=> T = [ΔH - ΔG] / ΔS
ΔG = 0 => T = [ 62.4 kJ/mol - 0 ] / 0.145 kJ/mol*K = 430.34K
This is, at 430.34 K the reaction will be at equilibrium, at T > 430.34 the reaction will be spontaneous, and at T < 430.4K the reaction will not occur spontaneously.
Yes. Parts of a cell work together just like stations in a factory.
Answer:
159 mg caffeine is being extracted in 60 mL dichloromethane
Explanation:
Given that:
mass of caffeine in 100 mL of water = 600 mg
Volume of the water = 100 mL
Partition co-efficient (K) = 4.6
mass of caffeine extracted = ??? (unknown)
The portion of the DCM = 60 mL
Partial co-efficient (K) = 
where;
solubility of compound in the organic solvent and
= solubility in aqueous water.
So; we can represent our data as:
÷ 
Since one part of the portion is A and the other part is B
A+B = 60 mL
A+B = 0.60
A= 0.60 - B
4.6=
÷ 
4.6 = 
4.6 ×
=
4.6 B
= 0.6 - B
2.76 B = 0.6 - B
2.76 + B = 0.6
3.76 B = 0.6
B = 
B = 0.159 g
B = 159 mg
∴ 159 mg caffeine is being extracted from the 100 mL of water containing 600 mg of caffeine with one portion of in 60 mL dichloromethane.
Answer:
idk
Explanation:
idk cool pee bee mee nee hee gee fee kee