(1) The melting of a crystalline solid is best depicted by the second graph. This is because, the second graph shows a horizontal line which means that for a while there was no change in temperature. This zone is the latent heat of fusion.
(2) The first graph shows the graph of a solid that is just heated but does not experience phase change. However, the second graph shows a solid that changes phase (from crystal/solid to liquid).
Answer : Electron P has greater energy difference than the Electron N.
Explanation :
Wavelength range of violet light = 400 - 500 nm
Wavelength range of orange light = 600 - 700 nm
The Planck's equation is,

where,
E = energy of light
c = speed of light
= wavelength of light
According to the Planck's equation, wavelength and energy follow inverse relation. As the wavelength increases, energy decreases.
From the given spectrum, the wavelength of violet light is less. We conclude that When electron P gives violet light on transition it means that energy difference between the energy level was high.
From the given spectrum, the wavelength of orange light is more. We conclude that When electron N gives orange light on transition it means that energy difference between the energy level was low.
So, Electron P which gives violet light on transition has greater energy difference than the Electron N.
Global win I think brace it say around small areas
The correct formula is H20S4