1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
11111nata11111 [884]
3 years ago
7

A 2.62 cm tall object is placed in 32.7 cm in front of a convex lens. The focal length

Physics
1 answer:
irakobra [83]3 years ago
4 0

Answer:

Hindi ko run po alam ang sagot

Explanation:

sorry po

You might be interested in
Three equal charge 1.8*10^-8 each are located at the corner of an equilateral triangle ABC side 10cm.calculate the electric pote
Arlecino [84]

Answer:

If all these three charges are positive with a magnitude of 1.8 \times 10^{-8}\; \rm C each, the electric potential at the midpoint of segment \rm AB would be approximately 8.3 \times 10^{3}\; \rm V.

Explanation:

Convert the unit of the length of each side of this triangle to meters: 10\; \rm cm = 0.10\; \rm m.

Distance between the midpoint of \rm AB and each of the three charges:

  • d({\rm A}) = 0.050\; \rm m.
  • d({\rm B}) = 0.050\; \rm m.
  • d({\rm C}) = \sqrt{3} \times (0.050\; \rm m).

Let k denote Coulomb's constant (k \approx 8.99 \times 10^{9}\; \rm N \cdot m^{2} \cdot C^{-2}.)

Electric potential due to the charge at \rm A: \displaystyle \frac{k\, q}{d({\rm A})}.

Electric potential due to the charge at \rm B: \displaystyle \frac{k\, q}{d({\rm B})}.

Electric potential due to the charge at \rm A: \displaystyle \frac{k\, q}{d({\rm C})}.

While forces are vectors, electric potentials are scalars. When more than one electric fields are superposed over one another, the resultant electric potential at some point would be the scalar sum of the electric potential at that position due to each of these fields.

Hence, the electric field at the midpoint of \rm AB due to all these three charges  would be:

\begin{aligned}& \frac{k\, q}{d({\rm A})} + \frac{k\, q}{d({\rm B})} + \frac{k\, q}{d({\rm C})} \\ &= k\, \left(\frac{q}{d({\rm A})} + \frac{q}{d({\rm B})} + \frac{q}{d({\rm C})}\right) \\ &\approx 8.99 \times 10^{9}\; \rm N \cdot m^{2} \cdot C^{-2} \\ & \quad \quad \times \left(\frac{1.8 \times 10^{-8} \; \rm C}{0.050\; \rm m} + \frac{1.8 \times 10^{-8} \; \rm C}{0.050\; \rm m} + \frac{1.8 \times 10^{-8} \; \rm C}{\sqrt{3} \times (0.050\; \rm m)}\right) \\ &\approx 8.3 \times 10^{3}\; \rm V\end{aligned}.

4 0
3 years ago
When is a secondary source more helpful than a primary source?
UNO [17]

Answer:

I think the answer is C.

Explanation:

A primary source is a first hand account of an event while a secondary source is a retelling or second hand account meaning as many details will be prevalent.

8 0
2 years ago
An object is five focal lengths from a concave mirror.how do the object and image heights compare?
enot [183]

An object distance is presented as s = 5f and we know that the mirror equation relates the image distance to the object distance and the focal length.

The mirror equation is 1/f = 1/s + 1/s’ where the variable f stands for the focal length of the mirror. Variable (s) represents the distance between the mirror surface and the object and the variable <span>(s’) represents the distance between the mirror surface and the image. </span>

In addition, a concave mirror will have a positive focal length (f) and a convex mirror will have a negative focal length (f).

Now, we then have 1/f = 1/5f + 1/s’ which is s’ = 5f/4

Then we get the magnification ratio that expresses the size or amount of magnification or reduction of the object or image and to get the magnification, we use this equation: M= s’/s

M= 5f/4x5f

s’ = 1/4s

Therefore, the image height is one fourth of the object height

7 0
3 years ago
This is about the magnet fields. thanks in advance.​
Wewaii [24]
The answer is A. The outer lines change as it moves
8 0
2 years ago
If a boy with 50kg run in 3m/s what is his velocity
stepladder [879]

His velocity is 3 m/s in the direction in which he is running in. which.

6 0
3 years ago
Read 2 more answers
Other questions:
  • I am getting tired quickly when I walk to school in the morning. What exercises can I do to help improve my level of fitness in
    8·2 answers
  • A ray of white light moves through the air and strikes the surface of water in a beaker. The index of refraction of the water is
    9·1 answer
  • 1. A 59 kg person is in a vehicle travelling at 41 m/s. The vehicle runs into a telephone pole. At impact, it
    10·1 answer
  • Two people, one of mass 85 kg and the other of mass 50 kg, sit in a rowboat of mass 90 kg. With the boat initially at rest, the
    7·1 answer
  • Which would be the most reliable source of information about the weather?
    7·2 answers
  • What is mechanics? Give name of its two sub branch?
    15·1 answer
  • Why is the restoring force in Hooke's law a negative value?
    12·2 answers
  • PLS HELP FIND THE AVREGE KENETIC ENERGY!!
    14·1 answer
  • What separates musical theater from other dance styles?
    10·1 answer
  • A balloon is rubbed against a sweater. Which of the following describes the result of this interaction?(1 point)
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!