Answer:
C. Fluorine because the model has 9 protons which is represented by the atomic number
Explanation:
We usually identify an element by the number of protons in them. The number of protons is the atomic number of an atom.
- Every atom has a specific number of protons in them.
- This number of protons is the atomic number.
- According to the periodic law, atoms are arranged on the periodic table based on their atomic number.
- The given fluorine atom has 9 protons which represents the atomic number of the atom.
- This way, the given number clearly shows the right model for identifying the chemical specie.
Calcium is used to isolate Rb from molten RbX because calcium has a smaller atomic radius than rubidium.
A chemical element's atomic radius, which is typically the average or typical distance between the nucleus's core and the outermost isolated electron, serves as a gauge for the size of an atom. There are numerous non-equivalent definitions of atomic radius since the border is not a clearly defined physical entity. Van der Waals radius, ionic radius, metallic radius, and covalent radius are the four most frequently used definitions of atomic radius. Atomic radii are typically measured in a chemically bound condition since it is challenging to isolated individual atoms in order to measure their radii individually.
Learn more about atomic radius here:
brainly.com/question/13607061
#SPJ4
Fireworks changes chemical energy into light energy
Answer:
0.3793 M
Explanation:
The unknown metal is zinc. So the equation of the reaction is;
Zn(s) + Cu^2+(aq) -------> Zn^2+(aq) + Cu(s)
From Nernst equation;
E = E° - 0.0592/n log Q
[Cu2+] = 0.050179 M
n = 2
[Zn^2+] = ?
E = 1.074 V
E° = 0.34 - (-0.76) = 1.1 V
Substituting values;
1.074 = 1.1 - 0.0592/2 log [Zn^2+]/0.050179
1.074 - 1.1 = - 0.0592/2 log [Zn^2+]/0.050179
-0.026 = -0.0296 log [Zn^2+]/0.050179
-0.026/-0.0296 = log [Zn^2+]/0.050179
0.8784 =log [Zn^2+]/0.050179
Antilog(0.8784) = [Zn^2+]/0.050179
7.558 = [Zn^2+]/0.050179
[Zn^2+] = 7.558 * 0.050179
[Zn^2+] = 0.3793 M