Here we will the speed of seagull which is v = 9 m/s
this is the speed of seagull when there is no effect of wind on it
now in part a)
if effect of wind is in opposite direction then it travels 6 km in 20 min
so the average speed is given by the ratio of total distance and total time


now since effect of wind is in opposite direction then we can say



Part b)
now if bird travels in the same direction of wind then we will have


now we can find the time to go back



Part c)
Total time of round trip when wind is present


now when there is no wind total time is given by


So due to wind time will be more
Answer:
can't tell if this is question, it is not written correctly
Explanation:
Electrical conductivity is the measure of a material's ability to allow the transport of an electric charge. Its SI is the siemens per meter, (A2s3m−3kg−1) (named after Werner von Siemens) or, more simply, Sm−1. It is the ratio of the current density to the electric field strength.
Answer:
The oceanic zone is subdivided into the epipelagic, mesopelagic, and bathypelagic zones on the basis of amount of light that reaches different depths. The mesopelagic (disphotic) zone, where only small amounts of light penetrate, lies below the Epipelagic zone.
Explanation:
object's weight is the independent of mass and gravity .
Weight = mass × gravity
Answer:
1) Time interval Blue Car Red Car
0 - 2 s Constant Velocity Increasing Velocity
2 - 3 s Constant Velocity Constant Velocity
3 - 5 s Constant Velocity Increasing Velocity
5 - 6 s Constant Velocity Decreasing Velocity
2) For Red and Blue car y₂ = 120 v =
=
= 20 m/s
We get the same velocity for two cars because it is the average velocity of the car at the given interval of time. It is measured for initial and final position.
3) At t = 2s, the cars are the same position, and are moving at the same rate
Position - same
Velocity - same
The position-time graph shares the same spot for two cars.