In general,
Power = (energy moved) / (time to move the energy) .
If it's mechanical power, then
Power = (work done) / (time to do the work) .
If it's electrical power, then it can be any one of these:
Power = (volts) x (amperes)
Power = (volts)² / (resistance, ohms)
Power = (amperes)² x (resistance, ohms) .
Whatever kind of energy you're dealing with, power always
turns out to be
(amount of energy produced, used, or moved)
divided by
(time taken to produce, use, or move the energy) .
Answer:
A. evaporation
Explanation:
Evaporation is a surface phenomenon as the molecules of the surface gets sufficient energy to overcome the force of attraction which will help in converting to the vapor phase.
Die meisten von ihnen haben die Möglichkeit zu den Anderen zu kommen oder die Möglichkeit für die Zeit der Arbeit mit dem Auto und der Wohnung zu
Answer:
Decreases to half.
Explanation:
From the question given above, the following data were obtained:
Initial mass (m₁) = m
Initial force (F₁) = F
Initial acceleration (a₁) =?
Final mass (m₂) = ½m
Final force (F₂) = ¼F
Final acceleration (a₂) =?
Next, we shall determine a₁. This can be obtained as follow:
F₁ = m₁a₁
F = ma₁
Divide both side by m
a₁ = F / m
Next, we shall determine a₂.
F₂ = m₂a₂
¼F = ½ma₂
2F = 4ma₂
Divide both side by 4m
a₂ = 2F / 4m
a₂ = F / 2m
Finally, we shall determine the ratio of a₂ to a₁. This can be obtained as follow:
a₁ = F / m
a₂ = F / 2m
a₂ : a₁ = a₂ / a₁
a₂ / a₁ = F/2m ÷ F/m
a₂ / a₁ = F/2m × m/F
a₂ / a₁ = ½
Cross multiply
a₂ = ½a₁
From the illustrations made above, the acceleration of the car will decrease to half the original acceleration
Answer:
the final energy of the system is 35.5 kJ.
Explanation:
Given;
initial energy of the system, E₁ = 10 kJ
heat transferred to the system, q₁ 30 kJ
Heat lost to the surrounding, q₂ = 5kJ
heat gained by the system, Q = q₁ - q₂ = 30 kJ - 5kJ = 25 kJ
work done on the system, W = 500 J = 0.5 kJ
Apply first law of thermodynamic,
ΔU = Q + W
where;
ΔU is change in internal energy
Q is the heat gained by the system
W is work done on the system
ΔU = 25kJ + 0.5 kJ
ΔU = 25.5 kJ
The final energy of the system is calculated as;
E₂ = E₁ + ΔU
E₂ = 10 kJ + 25.5 kJ
E₂ = 35.5 kJ.
Therefore, the final energy of the system is 35.5 kJ.