1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katen-ka-za [31]
3 years ago
5

Q011) The Doppler effect a. occurs when the frequency of sound waves received is lower if the wave source is moving toward you t

han if it's moving away. b. occurs when the pitch of a sound gets lower if the source is receding. c. is the basic explanation for the blue shift of light in our Universe. d. can be applied only to sound waves.
Physics
1 answer:
inn [45]3 years ago
8 0

Answer:

Option (c) is correct.

Explanation:

The apparent change in the frequency of light due to the relative motion between the source and the observer is called Doppler's effect.

When the source is moving towards the observer which is at rest, the apparent frequency increases and if the observer is moving away the frequency of sound decreases.

It occurs for both light and sound.  

So, to explain the blue shift of light in the universe is due to the Doppler's effect of light.

You might be interested in
How many seconds of space should you keep between you if you're driving a 100 foot truck 30 mph?
Marrrta [24]

Answer:

<em> The space in seconds that will be kept = 2.27 seconds</em>

Explanation:

S = d/t..................... Equation 1

making t the subject of formula in the equation above,

t = d/S.................... Equation 2

Where S = speed, d = distance, t = time.

<em>Conversion: (i)if 1 mph = 0.44704 m/s,</em>

<em>                 then, 30 mph = 30×0.44704    </em>

<em>                = 13.41 m/s</em>

<em>               (ii) If 1 foot = 0.3048 m</em>

<em>            then, 100 foot = 30.48 m.</em>

<em>Given: S = 30 mph = 13.41 m/s, d = 100 foot = 30.48 m</em>

<em>Substituting these values into equation 2</em>

<em>t = 30.48/13.41</em>

<em>t = 2.27 seconds.</em>

<em>Therefore the space in seconds that will be kept = 2.27 seconds</em>

7 0
3 years ago
Which of the following is not an example of a physical change?
Mazyrski [523]

Answer:

Explanation:

Cutting a string in half because

b is irreversible

c is a cheical and d is also a chemical change

8 0
3 years ago
A driven RLC circuit is being driven by an AC emf source with a maximum current of 2.75 A and maximum voltage of 150 V. The curr
weqwewe [10]

Answer:

(a). Z = 54.54 ohm

(b). R = 36 ohm

(c). The circuit will be Capacitive.

Explanation:

Given data

I = 2.75 A

Voltage = 150 V

\phi = 0.85 rad = 48.72°

(a). Impedance of the circuit is given by

Z = \frac{V}{I}

Z = \frac{150}{2.75}

Z = 54.54 ohm

(b). We know that resistance of the circuit is given by

R = \frac{Z}{\sqrt{1 + \tan^{2}\phi } }

Put the values of Z & \phi in above formula we get

R = \frac{54.54}{\sqrt{1 + \tan^{2} ( \ 48.72) } }

R = 36 ohm

(c). Since the phase angle is negative so the circuit will be Capacitive.

3 0
3 years ago
A 7600 kg rocket blasts off vertically from the launch pad with a constant upward acceleration of 2.35 m/s2 and feels no appreci
ollegr [7]

Answer:

a) The rocket reaches a maximum height of 737.577 meters.

b) The rocket will come crashing down approximately 17.655 seconds after engine failure.

Explanation:

a) Let suppose that rocket accelerates uniformly in the two stages. First, rocket is accelerates due to engine and second, it is decelerated by gravity.

1st Stage - Engine

Given that initial velocity, acceleration and travelled distance are known, we determine final velocity (v), measured in meters per second, by using this kinematic equation:

v = \sqrt{v_{o}^{2} +2\cdot a\cdot \Delta s} (1)

Where:

a - Acceleration, measured in meters per square second.

\Delta s - Travelled distance, measured in meters.

v_{o} - Initial velocity, measured in meters per second.

If we know that v_{o} = 0\,\frac{m}{s}, a = 2.35\,\frac{m}{s^{2}} and \Delta s = 595\,m, the final velocity of the rocket is:

v = \sqrt{\left(0\,\frac{m}{s} \right)^{2}+2\cdot \left(2.35\,\frac{m}{s^{2}} \right)\cdot (595\,m)}

v\approx 52.882\,\frac{m}{s}

The time associated with this launch (t), measured in seconds, is:

t = \frac{v-v_{o}}{a}

t = \frac{52.882\,\frac{m}{s}-0\,\frac{m}{s}}{2.35\,\frac{m}{s} }

t = 22.503\,s

2nd Stage - Gravity

The rocket reaches its maximum height when final velocity is zero:

v^{2} = v_{o}^{2} + 2\cdot a\cdot (s-s_{o}) (2)

Where:

v_{o} - Initial speed, measured in meters per second.

v - Final speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

If we know that v_{o} = 52.882\,\frac{m}{s}, v = 0\,\frac{m}{s}, a = -9.807\,\frac{m}{s^{2}} and s_{o} = 595\,m, then the maximum height reached by the rocket is:

v^{2} -v_{o}^{2} = 2\cdot a\cdot (s-s_{o})

s-s_{o} = \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = s_{o} + \frac{v^{2}-v_{o}^{2}}{2\cdot a}

s = 595\,m + \frac{\left(0\,\frac{m}{s} \right)^{2}-\left(52.882\,\frac{m}{s} \right)^{2}}{2\cdot \left(-9.807\,\frac{m}{s^{2}} \right)}

s = 737.577\,m

The rocket reaches a maximum height of 737.577 meters.

b) The time needed for the rocket to crash down to the launch pad is determined by the following kinematic equation:

s = s_{o} + v_{o}\cdot t +\frac{1}{2}\cdot a \cdot t^{2} (2)

Where:

s_{o} - Initial height, measured in meters.

s - Final height, measured in meters.

v_{o} - Initial speed, measured in meters per second.

a - Gravitational acceleration, measured in meters per square second.

t - Time, measured in seconds.

If we know that s_{o} = 595\,m, v_{o} = 52.882\,\frac{m}{s}, s = 0\,m and a = -9.807\,\frac{m}{s^{2}}, then the time needed by the rocket is:

0\,m = 595\,m + \left(52.882\,\frac{m}{s} \right)\cdot t + \frac{1}{2}\cdot \left(-9.807\,\frac{m}{s^{2}} \right)\cdot t^{2}

-4.904\cdot t^{2}+52.882\cdot t +595 = 0

Then, we solve this polynomial by Quadratic Formula:

t_{1}\approx 17.655\,s, t_{2} \approx -6.872\,s

Only the first root is solution that is physically reasonable. Hence, the rocket will come crashing down approximately 17.655 seconds after engine failure.

7 0
3 years ago
How much force is required to accelerate a 2 kg mass at 3 m/s2
swat32

Force = (mass) x (acceleration)                  Newton's second law of motion.

Force = (2 kg) x (3 m/s²)  =  6 newtons.

3 0
4 years ago
Other questions:
  • Describe an original example of <br> energy changing from one form to <br> two other forms
    15·1 answer
  • A. Write 2 -3 sentences describing the big bang theory and explaining why it is considered a theory, as opposed to a hypothesis.
    7·2 answers
  • The name of a sedimentary rock is usually based on:
    12·1 answer
  • The Earth's oceans act as a climate moderator. Oceans do this in many ways, including ALL BUT one method listed here. That is A)
    13·2 answers
  • What three tests must all theories pass to be considered a proven theory?
    8·1 answer
  • What is the displacement for a driver who travels 10 km to get to a point that is 4 km from his starting point
    12·1 answer
  • The temperature of 2.0 g of helium is increased at constant volume by ΔT. What mass of oxygen can have its temperature increased
    15·1 answer
  • HELP ASAP TIMED TEST
    5·1 answer
  • What is the rate of acceleration of a 2,000 kilogram truck if a force of 4,200 N is used to make it start moving forward?
    14·2 answers
  • Two trolleys are moving in the same direction along a track. Trolley 1 has a momentum of 2 kg m/s and Trolley 2 has a momentum o
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!