Answer:
the electricity dissipated, because of the time.
Explanation:
electricity dissipates.
Answer:
222.30 L
Explanation:
We'll begin by calculating the number of mole in 100 g of ammonia (NH₃). This can be obtained as follow:
Mass of NH₃ = 100 g
Molar mass of NH₃ = 14 + (3×1)
= 14 + 3
= 17 g/mol
Mole of NH₃ =?
Mole = mass /molar mass
Mole of NH₃ = 100 / 17
Mole of NH₃ = 5.88 moles
Next, we shall determine the number of mole of Hydrogen needed to produce 5.88 moles of NH₃. This can be obtained as follow:
N₂ + 3H₂ —> 2NH₃
From the balanced equation above,
3 moles of H₂ reacted to produce 2 moles NH₃.
Therefore, Xmol of H₂ is required to p 5.88 moles of NH₃ i.e
Xmol of H₂ = (3 × 5.88)/2
Xmol of H₂ = 8.82 moles
Finally, we shall determine the volume (in litre) of Hydrogen needed to produce 100 g (i.e 5.88 moles) of NH₃. This can be obtained as follow:
Pressure (P) = 95 KPa
Temperature (T) = 15 °C = 15 + 273 = 288 K
Number of mole of H₂ (n) = 8.82 moles
Gas constant (R) = 8.314 KPa.L/Kmol
Volume (V) =?
PV = nRT
95 × V = 8.82 × 8.314 × 288
95 × V = 21118.89024
Divide both side by 95
V = 21118.89024 / 95
V = 222.30 L
Thus the volume of Hydrogen needed for the reaction is 222.30 L
(A) gas to liquid
is most likely to take place. This change from gas to liquid is the forming of water molecules. Gas particles have the most energy and therefore speed up the most, whereas solids have the least amount of energy and slow down. The intermediate step from gas to solid is a liquid. We call this process from gas to liquid condensation.
It is water soluble so is also soluble in aqueous solutions of NaOH or NaHCO3.
Answer:
The more polar the liquid, the more likely that it is miscible with water. The polarity of a liquid does not affect its miscibility with water. The less polar the liquid, the more likely that it is miscible with water. The more polar the liquid, the less likely that it is miscible with water.
Explanation:
hope it helps you