Answer:
A) the current in AC electricity varies in magnitude and direction.
C) the voltage in AC electricity varies in magnitude and direction.
Explanation:
In DC current and voltage the direction of current will not change with time and it always remains the same.
So here in DC voltage and DC current the magnitude may change with time but the direction will always remain same
While in AC voltage and AC current the direction of AC will change with time
periodically.
So here magnitude and direction both will change in AC current and AC voltage.
so the correct answer is
A) the current in AC electricity varies in magnitude and direction.
C) the voltage in AC electricity varies in magnitude and direction.
Answer:
The final temperature of both objects is 400 K
Explanation:
The quantity of heat transferred per unit mass is given by;
Q = cΔT
where;
c is the specific heat capacity
ΔT is the change in temperature
The heat transferred by the object A per unit mass is given by;
Q(A) = caΔT
where;
ca is the specific heat capacity of object A
The heat transferred by the object B per unit mass is given by;
Q(B) = cbΔT
where;
cb is the specific heat capacity of object B
The heat lost by object B is equal to heat gained by object A
Q(A) = -Q(B)
But heat capacity of object B is twice that of object A
The final temperature of the two objects is given by

But heat capacity of object B is twice that of object A

Therefore, the final temperature of both objects is 400 K.
know how to ride a bike simply put also wear safety gear like a helmet knee pads things like that
hope this helps
The ball should take twice as long to return to its original position as it took to reach its maximum height, so it should return to its original position at
.
Answer:
A. the speed of a reaction
Explanation:
The thermodynamic aspect of a reaction will show you the energy needed for a reaction to occur. If the energy difference(ΔG) is positive, which means the reaction is absorbing energy and it called endothermically. The opposite will be an exothermic reaction that will release energy, which means it doesn't need energy and the energy difference (ΔG) will be negative.
Thermodynamic can be used to determine a few things of a reaction, like the direction of the reaction, the extent, or temperature in which the reaction is spontaneous. But thermodynamic not used to find the speed of a reaction.