Work= force*distance
Work= x*12
Force= mass*acceleration
Force= 5 kg*6
Force= 40 N
Work= 40×12
Work= 480 J (joules)
I think this is it
Answer:
See below
Explanation:
Vertical position is given by
df = do + vo t - 1/2 a t^2 df = final position = 0 (on the ground)
do =original position = 2 m
vo = original <u>VERTICAL</u> velocity = 0
a = acceleration of gravity = 9.81 m/s^2
THIS BECOMES
0 = 2 + 0 * t - 1/2 ( 9.81)t^2
to show t =<u> .639 seconds to hit the ground </u>
During this .639 seconds it flies horizontally at 10 m/s for a distance of
10 m/s * .639 s =<u> 6.39 m </u>
Answer:
Vf = 69.56 cm/s
Explanation:
In order to find the final speed of the ramp, we will use the equations of motion. First we use second equation of motion to find out the acceleration of marble:
s = Vi t + (1/2)at²
where,
s = distance traveled = 160 cm
Vi = Initial Speed = 0 cm/s (since, marble starts from rest)
t = time interval = 4.6 s
a = acceleration = ?
Therefore,
160 cm = (0 cm/s)(4.6 s) + (1/2)(a)(4.6 s)²
a = (320 cm)/(4.6 s)²
a = 15.12 cm/s²
Now, we use first equation of motion:
Vf = Vi + at
Vf = 0 cm/s + (15.12 cm/s²)(4.6 s)
<u>Vf = 69.56 cm/s</u>
Wavelength = velocity/frequency
wavelength = v/f
v= 13km/s = change this to m/s = 13000m/s
f= 14Hz
wavelength = 13000m/s÷14Hz =928.7 m