1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
miskamm [114]
3 years ago
11

In order to fill a tank of 1000 liter volume to a pressure of 10 atm at 298K, an 11.5Kg of the gas is required. How many moles o

f the gas are present in the tank? What is the molecular weight of the gas? Assuming that the gas to be a pure element can you identify it?
Engineering
1 answer:
lesya [120]3 years ago
3 0

Answer:

The molecular weight will be "28.12 g/mol".

Explanation:

The given values are:

Pressure,

P = 10 atm

  = 10\times 101325 \ Pa

  = 1013250 \ Pa

Temperature,

T = 298 K

Mass,

m = 11.5 Kg

Volume,

V = 1000 r

   = 1 \ m^3

R = 8.3145 J/mol K

Now,

By using the ideal gas law, we get

⇒ PV=nRT

o,

⇒ n=\frac{PV}{RT}

By substituting the values, we get

       =\frac{1013250\times 1}{8.3145\times 298}

       =408.94 \ moles

As we know,

⇒ Moles(n)=\frac{Mass(m)}{Molecular \ weight(MW)}

or,

⇒        MW=\frac{m}{n}

                   =\frac{11.5}{408.94}

                   =0.02812 \ Kg/mol

                   =28.12 \ g/mol

You might be interested in
"Write a statement that outputs variable numItems. End with a newline. Program will be tested with different input values."
kirill [66]

Answer:

The solution code is written in Java.

System.out.println(numItems);

Explanation:

Java <em>println() </em>method can be used to display any string on the console terminal. We can use <em>println()</em> method to output the value held by variable <em>numItems.</em> The <em>numItems </em>is passed as the input parameter to <em>println()</em> and this will output the value of <em>numItems</em> to console terminal and at the same time the output with be ended with a newline automatically.  

6 0
3 years ago
Ronny wants to calculate the mechanical advantage. He needs to determine the length of the effort arm and the length of the load
kakasveta [241]

Answer:

I hope it's helpful.

Explanation:

Simple Machines

Experiments focus on addressing areas pertaining to the relationships between effort force, load force, work, and mechanical advantage, such as: how simple machines change the force needed to lift a load; mechanical advantages relation to effort and load forces; how the relationship between the fulcrum, effort and load affect the force needed to lift a load; how mechanical advantage relates to effort and load forces and the length of effort and load arms.

Through investigations and models created with pulleys and levers, students find that work in physical terms is a force applied over a distance. Students also discover that while a simple machine may make work seem easier, in reality the amount of work does not decrease. Instead, machines make work seem easier by changing the direction of a force or by providing mechanical advantage as a ratio of load force to effort force.

Students examine how pulleys can be used alone or in combination affect the amount of force needed to lift a load in a bucket. Students find that a single pulley does not improve mechanical advantage, yet makes the effort applied to the load seem less because the pulley allows the effort to be applied in the direction of the force of gravity rather than against it. Students also discover that using two pulleys provides a mechanical advantage of 2, but that the effort must be applied over twice the distance in order to gain this mechanical advantage Thus the amount of work done on the load force remains the same.

Students conduct a series of experiments comparing the effects of changing load and effort force distances for the three classes of levers. Students discover that when the fulcrum is between the load and the effort (first class lever), moving the fulcrum closer to the load increases the length of the effort arm and decreases the length of the load arm. This change in fulcrum position results in an increase in mechanical advantage by decreasing the amount of effort force needed to lift the load. Thus, students will discover that mechanical advantage in levers can be determined either as the ratio of load force to effort force, or as the ratio of effort arm length to load arm length. Students then predict and test the effect of moving the fulcrum closer to the effort force. Students find that as the length of the effort arm decreases the amount of effort force required to lift the load increases.

Students explore how the position of the fulcrum and the length of the effort and load arms in a second-class lever affect mechanical advantage. A second-class lever is one in which the load is located between the fulcrum and the effort. In a second-class lever, moving the load changes the length of the load arm but has no effect on the length of the effort arm. As the effort arm is always longer than the load arm in this type of lever, mechanical advantage decreases as the length of the load arm approaches the length of the effort arm, yet will always be greater than 1 because the load must be located between the fulcrum and the effort.

Students then discover that the reverse is true when they create a third-class lever by placing the effort between the load and the fulcrum. Students discover that in the case of a third-class lever the effort arm is always shorter than the load arm, and thus the mechanical advantage will always be less than 1. Students also create a model of a third-class lever that is part of their daily life by modeling a human arm.

The CELL culminates with a performance assessment that asks students to apply their knowledge of simple machine design and mechanical advantage to create two machines, each with a mechanical advantage greater than 1.3. In doing so, students will demonstrate their understanding of the relationships between effort force, load force, pulleys, levers, mechanical advantage and work. The performance assessment will also provide students with an opportunity to hone their problem-solving skills as they test their knowledge.

Through this series of investigations students will come to understand that simple machines make work seem easier by changing the direction of an applied force as well as altering the mechanical advantage by afforded by using the machine.

Investigation focus:

Discover that simple machines make work seem easier by changing the force needed to lift a load.

Learn how effort and load forces affect the mechanical advantage of pulleys and levers.

8 0
2 years ago
What is the best countermeasure against social engineering?
Mkey [24]

Answer:

Hello Monk7294!

Answer:

Employee education

Explanation:

The most important countermeasure for social engineering is employee education. All the employees should be trained to keep confidential data safe. As a part of security education, organizations have to provide timely orientation about their security policy to new employees. The security policy should address the consequences of the breaches.

<em>- I Hope this helps Have an awesome day!</em>

<em>~ Chloe marcus <3</em>

3 0
2 years ago
Along with refining craft skills another way to increase the odds for career advancement is to
Xelga [282]

The acquisition of additional certifications with a personal refined craft skills can increase the odds for career advancemen.

<h3>What is a career advancement?</h3>

An advancement is achieved in a career if a professional use their skill sets, determination or perserverance to achieve new career height.

An example of a career advancement is when an employee progresses from entry-level position to management and transits from an occupation to another.

Therefore, the Option A is correct.

Read more about career advancement

<em>brainly.com/question/7053706</em>

7 0
2 years ago
Identify factors that can cause a process to become out of control. Give several examples of such factors.
Oliga [24]

Answer:

Explained

Explanation:

This situation can occur because of various factors such as:

  • Gradual deterioration of lubrication and coolant.
  • change of environmental condition such as temperature, humidity, moisture, etc.
  • Change in the properties of incoming raw material
  • An increase or decrease in the temperature of the heat treating operation
  • Debris interfering with the manufacturing process.
4 0
3 years ago
Other questions:
  • What is an Algorithm? *
    5·1 answer
  • Where Does a Solar Engineer Work? <br> (2 sentences or more please)
    14·2 answers
  • A 1000 KVA three phase transformer has a secondary voltage of 208/120. What is the secondary full load amperage?
    9·1 answer
  • In your opinion, what is the external opportunity cost of a successful biking company in a community
    7·1 answer
  • How many astronauts work<br> in the International Space Station
    7·1 answer
  • Why do you suppose a value of 5 is used? Do you think other values might work?
    6·1 answer
  • What should you use to keep battery terminals from corroding
    12·1 answer
  • I love touching the atmospheres crest
    8·1 answer
  • When hermetic refrigerant motor-compressors are designed to operate continuously at currents greater than 156 percent of the rat
    10·1 answer
  • Whose responsibility is it to provide direction on correct ladder usage?<br> select the best option.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!