Answer:
T = 15 kN
F = 23.33 kN
Explanation:
Given the data in the question,
We apply the impulse momentum principle on the total system,
mv₁ + ∑
= mv₂
we substitute
[50 + 3(30)]×10³ × 0 + FΔt = [50 + 3(30)]×10³ × ( 45 × 1000 / 3600 )
F( 75 - 0 ) = 1.75 × 10⁶
The resultant frictional tractive force F is will then be;
F = 1.75 × 10⁶ / 75
F = 23333.33 N
F = 23.33 kN
Applying the impulse momentum principle on the three cars;
mv₁ + ∑
= mv₂
[3(30)]×10³ × 0 + FΔt = [3(30)]×10³ × ( 45 × 1000 / 3600 )
F(75-0) = 1.125 × 10⁶
The force T developed is then;
T = 1.125 × 10⁶ / 75
T = 15000 N
T = 15 kN
Answer:
Technician A only
Explanation:
Rapid wear of the sealing ring and the seal ring groove are result of excessive end play
Answer:
The correct option is A
Explanation:
Heather is trying to establish a theory of probable cause. In this step of the troubleshooting process, the person troubleshooting questions the obvious and then test the theory or response given by the user to really determine the cause. Once confirmation of this theory has been achieved, the troubleshooter then tries to establish a resolution to the problem. However in the event whereby the theory is not confirmed, the troubleshooter then tries to establish a new theory.
Answer:
4.5kg/min
Explanation:
Given parameters

if we take
The mass flow rate of the second stream = 
The mass flow rate of mixed exit stream = 
Now from mass conservation


The temperature of the mixed exit stream given as

Therefore the mass flow rate of second stream will be 4.5 kg/min.
Answer:




Explanation:
From the question we are told that:
Zener diode Voltage 
Zener diode Current 
Note

Supply Voltage 
Reduction Percentage 
Generally the equation for Kirchhoff's Voltage Law is mathematically given by



Therefore




Generally the equation for Kirchhoff's Current Law is mathematically given by




Therefore


