An alpha-numeric designator which is systematically assigned at the time of manufacture, so as to identify the manufacturer, month, year, location, and batch is referred to as lot number.
<h3>What is a product?</h3>
A product can be defined as any physical object (tangible item) that is typically produced by a manufacturer so as to satisfy and meet the demands, needs or wants of every customer. Also, some examples of a product include the following:
- Refrigerator
- Television
- Microwave oven
- Pencil
- Smartphone
- Computer
- Perfume
<h3>What is lot number?</h3>
A lot number can be defined as an alpha-numeric designator which is systematically designed and assigned at the time of manufacture, so as to identify the manufacturer, month, year, location, and batch.
Read more on products here: brainly.com/question/14308690
#SPJ1
Answer:
Between 35°– 45°
Explanation:
In the vertical position, Point the flame in the direction of travel. Keep the flame tip at the correct height above the base metal. An angle of 35°–45° should be maintained between the torch tip and the base metal. This angle may be varied up or down to heat or cool the weld pool if it is too narrow or too wide
Answer:
See attachment for chart
Explanation:
The IPO chart implements he following algorithm
The expressions in bracket are typical examples
<u>Input</u>
Input Number (5, 4.2 or -1.2) --- This will be passed to the Processing module
<u>Processing</u>
Assign variable to the input number (x)
Calculate the square (x = 5 * 5)
Display the result (25) ----> This will be passed to the output module
<u>Output</u>
Display 25
Answer:
T=151 K, U=-1.848*10^6J
Explanation:
The given process occurs when the pressure is constant. Given gas follows the Ideal Gas Law:
pV=nRT
For the given scenario, we operate with the amount of the gas- n- calculated in moles. To find n, we use molar mass: M=102 g/mol.
Using the given mass m, molar mass M, we can get the following equation:
pV=mRT/M
To calculate change in the internal energy, we need to know initial and final temperatures. We can calculate both temperatures as:
T=pVM/(Rm); so initial T=302.61K and final T=151.289K
Now we can calculate change of U:
U=3/2 mRT/M using T- difference in temperatures
U=-1.848*10^6 J
Note, that the energy was taken away from the system.