Atomic or hybrid orbital on the central br atom makes up the sigma bond between this br and an outer f atom in bromine trifluoride, brf3 is sp2 hybridization
Trigonal hybridization is another name for sp2 hybridization. It entails combining one's' orbital with two 'p' orbitals of equal energy to create a new hybrid orbital known as sp2. A trigonal symmetry combination of s and p orbitals that is kept at 120
One of the hybrid orbitals formed when one s orbital and two p orbitals are mathematically merged to form three new equivalent orbitals orientated toward the corners of a triangle is sp2 hybridization.
The only feasible molecule geometry for sp2 hybridized center atoms is trigonal planar. When all of the bonds are in place, the shape is trigonal planar as well.
To learn more about sp2 hybridization please visit -
brainly.com/question/6270186
#SPJ4
Answer:
19.K, potassium
Explanation:
it has all properties of metals
Answer: 69.72 kg of cryolite will be produced.
Explanation:
The balanced chemical equation is:

To calculate the moles, we use the equation:

moles of
= 
moles of
= 
moles of
= 
As 1 mole of
reacts with 6 moles of 
166 moles of
reacts with =
moles of 
As 1 mole of
reacts with 12 moles of 
166 moles of
reacts with =
moles of 
Thus
is the limiting reagent.
As 1 mole of
produces = 2 moles of cryolite
166 moles of
reacts with =
moles of cryolite
Mass of cryolite
= 
Thus 69.72 kg of cryolite will be produced.
Multiple by 2 because it was give u right answer
The balanced equation for the above reaction is as follows;
2HCl + K₂SO₃ ---> 2KCl + H₂O + SO₂
stoichiometry of HCl to SO₂ is 2:1
number of moles of HCl reacted - 15.0 g / 36.5 g/mol = 0.411 mol
according to molar ratio
number of SO₂ moles formed - 0.411 mol /2 = 0.206 mol
since we know the number of moles we can find volume using ideal gas law equation
PV = nRT
where
P - pressure - 1.35 atm x 101 325 Pa/atm = 136 789 Pa
V - volume
n - number of moles - 0.206 mol
R - universal gas constant - 8.314 Jmol⁻¹K⁻¹
T - temperature - 325 K
substituting values in the equation
136 789 Pa x V = 0.206 mol x 8.314 Jmol⁻¹K⁻¹ x 325 K
V = 4.07 L
volume of SO₂ formed is 4.07 L