Kepler's third law hypothesizes that for all the small bodies in orbit around the
same central body, the ratio of (orbital period squared) / (orbital radius cubed)
is the same number.
<u>Moon #1:</u> (1.262 days)² / (2.346 x 10^4 km)³
<u>Moon #2:</u> (orbital period)² / (9.378 x 10^3 km)³
If Kepler knew what he was talking about ... and Newton showed that he did ...
then these two fractions are equal, and may be written as a proportion.
Cross multiply the proportion:
(orbital period)² x (2.346 x 10^4)³ = (1.262 days)² x (9.378 x 10^3)³
Divide each side by (2.346 x 10^4)³:
(Orbital period)² = (1.262 days)² x (9.378 x 10^3 km)³ / (2.346 x 10^4 km)³
= 0.1017 day²
Orbital period = <u>0.319 Earth day</u> = about 7.6 hours.
D
Explanation:
The are the same but difference
Answer:
The extension is directly proportional to the force applied.
ex: if the force is doubled, the extension doubles. This works until the limit of proportionality is exceeded.
Hope this helped~
Explanation:
Golf ball because it weighs less so it has more power to yeah
Answer:
explained
Explanation:
When the intensity of light is increased on a piece of metal only the number of electron ejected will increase because all other things independent of intensity of light.
Light below certain frequency will not cause any electron emission no matter how intense.
The intensity produces more electron but does not change the maximum kinetic energy of electrons.
Work function is independent of the intensity of light, because it is an intrinsic property of a material.