Al(OH)3 = 26.98 + [(16×3) + (1.01×3)] = 26.98 + 51.03 = 78.01 and the unit will be g/mol
<h3>
<em>Al(OH)3 = 78.01 g/mol</em></h3>
Answer:
The correct answer is a
Explanation:
At projectile launch speeds are
X axis vₓ = v₀ = cte
Y axis
= v_{oy} –gt
The moment is defined as
p = mv
For the x axis
pₓ = mvₓ = m v₀ₓ
As the speed is constant the moment is constant
For the y axis
p_{y} = m v_{y} = m (v_{oy} –gt) = m v_{oy} - m (gt)
Speed changes over time, so the moment also changes over time
Let's examine the answer
i True
ii False. The moment changes with time
The correct answer is a
Answer:
1200 W
Explanation:
Power is given by the ratio between work done and time taken:

where W is the work done and t the time taken.
In this problem, W = 3600 J and t = 3.0 s. Therefore, the power in this exercise is

Answer:
The earth's gravitational force on the sun is equal to the sun's gravitational force on the earth
Explanation:
Newton's third law (law of action-reaction) states that:
"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"
In other words, when two objects exert a force on each other, then the magnitude of the two forces is the same (while the directions are opposite).
In this problem, we can call the Sun as "object A" and the Earth as "object B". According to Newton's third law, therefore, we can say that the gravitational force that the Earth exerts on the Sun is equal (in magnitude, and opposite in direction) to the gravitational force that the Sun exerts on the Earth.
Answer:
The velocity of each ball after the collision are 2.19 m/s and 2.58 m/s.
Explanation:
Given that,
Mass of object = 5 kg
Speed = 3 m/s
Mass of stationary object = 3 kg
Moving object deflected = 30°
Stationary object deflected = 31°
We need to calculate the velocity of each ball after collision
Using conservation of momentum
Along x-axis

Put the value into the fomrula


....(I)
Along y -axis

Put the value into the formula

...(II)
From equation (I) and (II)


Put the value of v₁ in equation (I)



Hence, The velocity of each ball after the collision are 2.19 m/s and 2.58 m/s.