Answer:
The ball impact velocity i.e(velocity right before landing) is 6.359 m/s
Explanation:
This problem is related to parabolic motion and can be solved by the following equations:
----------------------(1)
---------(2)
----------------------- (3)
Where:
x = m is the horizontal distance travelled by the golf ball
is the golf ball's initial velocity
is the angle (it was a horizontal shot)
t is the time
y is the final height of the ball
is the initial height of the ball
g is the acceleration due gravity
V is the final velocity of the ball
Step 1: finding t
Let use the equation(2)


s
Substituting (6) in (1):
-------------------(4)
Step 2: Finding
:
From equation(4)


m/s (8)
Substituting
in (3):
v =42 .01 - 15.3566
V=26.359 m/s
Explanation:
Given data:
d = 30 mm = 0.03 m
L = 1m
S
= 70 Mpa
Δd = -0.0001d
Axial force = ?
validity of elastic deformation assumption.
Solution:
O'₂ = Δd/d = (-0.0001d)/d = -0.0001
For copper,
v = 0.326 E = 119×10³ Mpa
O'₁ = O'₂/v = (-0.0001)/0.326 = 306×10⁶
∵δ = F.L/E.A and σ = F/A so,
σ = δ.E/L = O'₁ .E = (306×10⁻⁶).(119×10³) = 36.5 MPa
F = σ . A = (36.5 × 10⁻⁶) . (π/4 × (0.03)²) = 25800 KN
S
= 70 MPa > σ = 36.5 MPa
∵ elastic deformation assumption is valid.
so the answer is
F = 25800 K N and S
> σ
Answer:
FG and FP
Explanation:
Gravitational Force(FG) because the box is being pulled down and a resistance force pushing up because he is pushing(FP) up on the box.
I hope this helps!
The answer is False. Simple machines are divided into three main categories, and not two. They are Levers, inclined planes and Pulleys. <span>These three simple machines all change force in such a way that it makes it easier for us to move an object. </span>
Answer:
Plz translate in english so that i can answer