According to the Law of Universal Gravitation, the gravitational force is directly proportional to the mass, and inversely proportional to the distance. In this problem, let's assume the celestial bodies to be restricted to the planets and the Sun. Since the distance is specified, the other factor would be the mass. Among all the celestial bodies, the Sun is the most massive. So, the Sun would cause the strongest gravitational pull to the satellite.
Washing your hands and taking medicine
Hi!
SI units are physical measurements which will be in the form of kilograms, second, kelvin, metres, etc.
Since kilograms measure the weight of an object, it is out. Miles and feet are not SI units, so they are also out. This only leaves one answer left!
Hopefully, this helps! =)
Answer:

Explanation:
We know that the gravity on the surface of the moon is,
<u>Gravity at a height h above the surface of the moon will be given as:</u>
..........................(1)
where:
G = universal gravitational constant
m = mass of the moon
r = radius of moon
We have:
is the distance between the surface of the earth and the moon.
Now put the respective values in eq. (1)

is the gravity on the moon the earth-surface.