Answer : The mass of
is, 295.323 grams
Solution :
First we have to calculate the moles of
.

Now we have to calculate the moles of NaBr.
The balanced chemical reaction is,

From the balanced reaction we conclude that
As, 2 moles of
react with 2 moles of 
So, 2.87 moles of
react with 2.87 moles of 
Now we have to calculate the mass of NaBr.


Therefore, the mass mass of
is, 295.323 grams
4 protons the number of proton has the same number of electron [which is the same as atomic number]
Transferring or sharing electrons between atoms forms a covalent bond.<span> Covalent
bonding is when atoms share electrons. It is a chemical bond that involves the
sharing of electron pairs. These pairs are called bonding pairs. Examples of
compounds that has covalent bonds are CO2, organic compounds, lipids and
proteins.</span>
Wurtz reaction is a special type of organic reaction involving the synthesis of aliphatic hydrocarbons from two molecules of an alkyl halide and two atoms of sodium in the presence of dry ether solution
Please bear in mind that wurtz reaction fails whenever tertiary alkyl halides are used.
An example of Wurtz reaction is given below:
2R – X + 2Na → R–R + 2Na + X−
<h3>What are organic compounds?</h3>
Organic compounds can simply be defined as those classes of organic molecules which contain carbon atoms covalently bonded to hydrogen atoms (C-H bonds).
Below are some few general characteristics of organic compounds:
- All organic compounds contain carbon.
- Most of them are flammable.
- They are all soluble in non-polar solvents
- Most organic compounds / substances are covalently bonded molecules
Some classes of organic compounds are:
So therefore, Wurtz reaction is a special type of organic reaction involving the synthesis of aliphatic hydrocarbons from two molecules of an alkyl halide and two atoms of sodium in the presence of dry ether solution
Learn more about organic compounds:
brainly.com/question/704297
#SPJ1
Calculate the mass of the solute <span>in the solution :
Molar mass KCl = </span><span>74.55 g/mol
m = Molarity * molar mass * volume
m = 0.9 * 74.55 * 3.5
m = 234.8325 g
</span><span>To prepare 0.9 M KCl solution, weigh 234.8325 g of salt in an analytical balance, dissolve in a beaker, shortly after transfer with the help of a funnel of transfer to a volumetric flask of 100 cm</span>³<span> and complete with water up to the mark, then cover the balloon and finally shake the solution to mix
hope this helps!</span>