CO2<span> is a linear molecule and the Oxygen (O) atoms on each end are symmetrical. Polarity results from an unequal sharing of valence electrons. Because of this symmetry there is no region of unequal sharing and </span>CO2<span> is a</span>nonpolar<span> molecule</span>
<span>The region(s) of the periodic table which are
made up of elements that can adopt both positive and negative oxidation numbers
are the “non-metal” region. As we can see on the periodic table, the elements situated
at the right side of the table have two oxidation states, one positive and the
other a negative. </span>
Hey there!
The elements in this equation are K, N, O, H, and C.
Let's count how many of each are on each side to see if it is balanced.
K: 2 on the left, 2 on the right.
<em>N: 2 on the left, 4 on the right. </em>
<em>O: 9 on the left, 6 on the right. </em>
<em>H: 2 on the left, 4 on the right. </em>
C: 1 on the left, 1 on the right.
Notice that there are different amounts of N, O, and H on the left side and the right side.
This means that the equation is not balanced.
Hope this helps!
Answer: 
Explanation:Bond energy of H-H is 436.4 kJ/mole
Bond energy of C-H is 414 kJ/mol
Bond energy of C=C is 620 kJ/mol
Bond energy of C≡C is 835 kJ/mol

= {1B.E(C≡C)+2B.E(C-H) +1B.E(H-H)} - {1B.E(C=C)+4B.E(C-H)}

