Most likely, the light wave will be absorbed by the wall. Without any information as to the size and color of the wall, the location and size of the hole, or the location of the light wave, this is a generalized probability problem. For all of the places the light could be, it's more likely that it hits the wall than the hole (if the hole is less than 50% of the area of the wall).
KE = 1/2 * m * v^2
KE = 1/2 * 0.135 * 40^2
KE = 1/2 * 0.135 * 1600
KE = 108 J
the answer should be:
When the buoyant force is equal to the force of gravity
<span>The first stage in the Gas model of stress is alarm and
mobilization. So the correct option in regards to the given question is option “d”.
Hans Selye is the person that evolved this model and he has explained this
model in complete details. He has broken
down his model into three stages. The first stage involves alarm and
mobilization. The second stage includes resistance. The third and the final
stage include the exhaustion stage. These are the stages that an organism goes
through to restore back the balance when stress is exerted from outside. </span>
I am not sure but i think the answer is C