Answer:
204.8 K
Explanation:
We use the ideal gas equation:
PV = nRT
where R is the gas constant (0.082 L.atm/K.mol).
We have the following data:
n= 4 moles
P = 5.6 atm
V = 12 L
So, we introduce the data in the ideal gas equation to calculate the temperature (T):
T = PV/nR = (5.6 atm x 12 L)/(4 mol x 0.082 L.atm/K.mol) = 204.8 K ≅ -68 °C
Question:
a. Diffusion
b. Facilitated diffusion
c. Both
d. Neither
1. movement to area of lower concentration
2. movement across a membrane
3. steroid transport into cell
4. requires energy
5. movement assisted by proteins
6. glucose transport into cell
Answer:
The sorting is as follows
a. (1)
b. (5 and 6)
c. (1 and 2)
d. (4)
Explanation:
Diffusion is the movement of particles across a membrane from a high concentration region to one with a lower concentration of the diffusing substance
Here we have the correct sorting as follows
a. Diffusion
3. steroid transport into cell
b. Facilitated diffusion
5. movement assisted by proteins
6. glucose transport into cell
c. Both
1. movement to area of lower concentration
2. movement across a membrane
d. Neither
4. requires energy
Answer:
Solids: definite shape and definite volume (highest density)
Liquid: indefinite shape and definite volume (glide past each other)
Gas: indefinite shape and indefinite volume (lowest density)
Explanation:
look at the answer
Answer:The first task of a nuclear weapon design is to rapidly assemble a supercritical mass of fissile uranium or plutonium. A supercritical mass is one in which the percentage of fission-produced neutrons captured by another fissile nucleus is large enough that each fission event, on average, causes more than one additional fission event. Once the critical mass is assembled, at maximum density, a burst of neutrons is supplied to start as many chain reactions as possible. Early weapons used a modulated neutron generator codenamed "Urchin" inside the pit containing polonium-210 and beryllium separated by a thin barrier. Implosion of the pit crushed the neutron generator, mixing the two metals, thereby allowing alpha particles from the polonium to interact with beryllium to produce free neutrons. In modern weapons, the neutron generator is a high-voltage vacuum tube containing a particle accelerator which bombards a deuterium/tritium-metal hydride target with deuterium and tritium ions. The resulting small-scale fusion produces neutrons at a protected location outside the physics package, from which they penetrate the pit. This method allows better control of the timing of chain reaction initiation.
Explanation:
Answer:
A I did the exam and I saw A sorry if it is wrong dont have the best of memory