Answer:
i) Upwards delivery
ii) Downwards delivery
Explanation:
The methods used in the collection of gases are quite different depending on the state of the gas. The solubility and density of gases are the factors that determine the method of collection to be used.
Upwards delivery is used to collect gases that are soluble in water and lighter compared to air. Examples of these kind of gases include; Cl2 and SO2
Downwards delivery is used to collect gases that are soluble in water and denser than air. An example of this kind of gas is ammonia gas, NH4.
1) ideal gas law: p·V = n·R·T.
p - pressure of gas.
V -volume of gas.
n - amount of substance.
R - universal gas constant.
T - temperature of gas.
n₁ = 0,04 mol, V₁ = 0,06 l.
n₂ = 0,07 mol, V₂ = 0,06 · 0,07 ÷ 0,04 = 0,105 l.
2) V₁ = 0,06 l, T₁ = 240,00 K.
T₂ = 340,00 K, V₂ = 340 · 0,06 ÷ 240 = 0,05 l.
Answer:
It covers changes to the position of equilibrium if you change concentration, pressure or temperature. ... If a dynamic equilibrium is disturbed by changing the conditions, the position of equilibrium moves to counteract the change
Explanation:
Answer:
9.1
Explanation:
Step 1: Calculate the basic dissociation constant of propionate ion (Kb)
Sodium propionate is a strong electrolyte that dissociates according to the following equation.
NaC₃H₅O₂ ⇒ Na⁺ + C₃H₅O₂⁻
Propionate is the conjugate base of propionic acid according to the following equation.
C₃H₅O₂⁻ + H₂O ⇄ HC₃H₅O₂ + OH⁻
We can calculate Kb for propionate using the following expression.
Ka × Kb = Kw
Kb = Kw/Ka = 1.0 × 10⁻¹⁴/1.3 × 10⁻⁵ = 7.7 × 10⁻¹⁰
Step 2: Calculate the concentration of OH⁻
The concentration of the base (Cb) is 0.24 M. We can calculate [OH⁻] using the following expression.
[OH⁻] = √(Kb × Cb) = √(7.7 × 10⁻¹⁰ × 0.24) = 1.4 × 10⁻⁵ M
Step 3: Calculate the concentration of H⁺
We will use the following expression.
Kw = [H⁺] × [OH⁻]
[H⁺] = Kw/[OH⁻] = 1.0 × 10⁻¹⁴/1.4 × 10⁻⁵ = 7.1 × 10⁻¹⁰ M
Step 4: Calculate the pH of the solution
We will use the definition of pH.
pH = -log [H⁺] = -log 7.1 × 10⁻¹⁰ = 9.1
Doppler effect is the compression or extension of a sound wave, which causes a change in its wavelength / frequency (and so its sound).
Explanation: It is defined as the effect produced by a moving source of waves in which there is an upward shift in frequency for observers, the source is moving towards and downward shift of frequency from which the source is moving away. used to tell if an object in space is moving toward or away from us.