Force = mass × acceleration
To find acceleration, we can divide the speed by the time it took:
acceleration = 2.40×10^7 / 1.8×10^-9
acceleration = 1.33×10^16
the mass is equal to the mass of an electron
force = (9.11×10^-31)(1.33×10^16)
force = 1.21×10^-14 N
Answer:
Distance = 13.9 meters
Explanation:
Given the following data;
Maximum speed = 150 km/hr to meters per seconds = 150 * 1000/3600 = 41.67 m/s
Decelerating speed = 3m/s
To find the distance travelled with this speed;
Distance = maximum speed/decelerating speed
Distance = 41.67/3
Distance = 13.9 meters
Therefore, the bus would travel a distance of 13.9 meters before stopping.
Answer:
3. at new Moon only when the Moon is on the ecliptic.
Explanation:
- Solar eclipse is the condition when the moon comes in between the sun and the earth. In this condition the moon casts its shadow on the earth.
- Whether the eclipse is a total solar eclipse, a partial solar eclipse or an annular solar eclipse depends on various factors, but the position of the moon must be on the same orbital plane as that of the earth's orbit around the sun.
- The sun is about 400 times larger than the moon in size and the sun is almost 400 times farther from the earth than the moon is, this makes it possible for the moon to cover the sun completely leading to a complete solar eclipse.
- As we know that the orbit of the earth around the sun and the orbit of the moon around the earth is elliptical which leads to a variation in the distance from their rotating centers, so not of every eclipse the moon covers the sun completely developing an annular eclipse.
- When the moon is close enough to the earth on the ecliptic but not completely aligned in between the sun and the earth leads to a partial solar eclipse.
Answer:
The correct answer is "0.32 mL".
Explanation:
The given values are:
Density of gold bar,
d = 19.3 g/mL
Mass of gold bar,
m = 6.3 grams
Now,
The volume will be:
⇒ ![Density = \frac{Mass}{Volume}](https://tex.z-dn.net/?f=Density%20%3D%20%5Cfrac%7BMass%7D%7BVolume%7D)
or,
⇒ ![Volume=\frac{Mass}{Density}](https://tex.z-dn.net/?f=Volume%3D%5Cfrac%7BMass%7D%7BDensity%7D)
On substituting the values, we get
⇒ ![=\frac{6.3 \ g}{19.3 \ g/mL}](https://tex.z-dn.net/?f=%3D%5Cfrac%7B6.3%20%5C%20g%7D%7B19.3%20%5C%20g%2FmL%7D)
⇒ ![=0.32 \ mL](https://tex.z-dn.net/?f=%3D0.32%20%5C%20mL)
Answer:
The right option is option E. None of the answer choices given are totally correct.
Explanation:
All insulators normally have an equal amount of positive and negative charges distributed on their surface.
The amber rod (an insulator) is called negative because after the coming together with fur (another insulator), the amber rod rubs off electrons from the fur onto itself and has an overall more negatively charged particles than positively charged particles on its surface.
The fur in turn becomes positive because it has more positive charges than negative on its surface.
So, the convention allows the now rubbed off amber rod to be called negative.
So, it is evident that none of the answer choices are totally correct, the right answer is more of a mix of some of the answer choices and more!
Hope this helps!!