1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Scilla [17]
2 years ago
8

PE (potential energy) + KE (kinetic energy) will equal ME (mechanical energy) ... explain this in your own words, or by using an

example.
Physics
2 answers:
sdas [7]2 years ago
7 0

Answer:

Potential energy plus kinetic energy equals mechanical energy because mechanical energy is basically just all of an object's energy, it's just two kinds of energy. The potential is stored inside and kinetic is being used. Both of those together is the total amount of the objects energy, which is the mechanical energy.

Explanation:

r-ruslan [8.4K]2 years ago
5 0
Possible energy in addition to kinetic energy approaches mechanical energy in light of the fact that mechanical energy is essentially only the entirety of an article's energy, it's only two sorts of energy. The potential is put away inside and dynamic is being utilized. Both of those together is the aggregate sum of the articles energy, which is the mechanical energy
You might be interested in
What type of clouds usually accompany cold fronts?
ASHA 777 [7]

Answer: Cumulus

Explanation: Most large cloud fronts are made up of cumulus clouds, large storm clouds are cumulonimbus clouds.

6 0
3 years ago
Read 2 more answers
The normal eye, myopic eye and old age
yanalaym [24]

Answer:

1)    f’₀ / f = 1.10, the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) the two diameters have the same order of magnitude and are very close to each other

Explanation:

You have some problems in the writing of your exercise, we will try to answer.

1) The equation to be used in geometric optics is the constructor equation

          \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

where p and q are the distance to the object and the image, respectively, f is the focal length

* For the normal eye and with presbyopia

the object is at infinity (p = inf) and the image is on the retina (q = 15 mm = 1.5 cm)

        \frac{1}{f'_o} = 1/ inf + \frac{1}{1.5}

        f'₀ = 1.5 cm

this is the focal length for this type of eye

* Eye with myopia

the distance to the object is p = 15 cm the distance to the image that is on the retina is q = 1.5 cm

           1 / f = 1/15 + 1 / 1.5

           1 / f = 0.733

            f = 1.36 cm

this is the focal length for the myopic eye.

In general, the two focal lengths are related

         f’₀ / f = 1.5 / 1.36

         f’₀ / f = 1.10

The question of the relationship between the focal length (f'₀) and the distance to the retina (image) is given by the constructor's equation

2) For this second part we have a diffraction problem, the point diameter corresponds to the first zero of the diffraction pattern that is given by the expression for a linear slit

          a sin θ= m λ

the first zero occurs for m = 1, as the angles are very small

          tan θ = y / f = sin θ / cos θ

for some very small the cosine is 1

          sin θ = y / f

where f is the distance of the lens (eye)

           y / f = lam / a

in the case of the eye we have a circular slit, therefore the system must be solved in polar coordinates, giving a numerical factor

           y / f = 1.22 λ / D

           y = 1.22 λ f / D

where D is the diameter of the eye

          D = 2R₀

          D = 2 0.1

          D = 0.2 cm

           

the eye has its highest sensitivity for lam = 550 10⁻⁹ m (green light), let's use this wavelength for the calculation

         

* normal eye

the focal length of the normal eye can be accommodated to give a focus on the immobile retian, so let's use the constructor equation

      \frac{1}{f} = \frac{1}{p} + \frac{1}{q}

sustitute

       \frac{1}{f} = \frac{1}{25} + \frac{1}{1.5}

       \frac{1}{f}= 0.7066

        f = 1.415 cm

therefore the diffraction is

        y = 1.22  550 10⁻⁹  1.415  / 0.2

        y = 4.75 10⁻⁶ m

this is the radius, the diffraction diameter is

       d = 2y

       d_normal = 9.49 10⁻⁶ m

* myopic eye

In the statement they indicate that the distance to the object is p = 15 cm, the retina is at the same distance, it does not move, q = 1.5 cm

       \frac{1}{f} = \frac{1}{15} + \frac{1}{ 1.5}

        \frac{1}{f}= 0.733

         f = 1.36 cm

diffraction is

        y = 1.22 550 10-9 1.36 10-2 / 0.2 10--2

        y = 4.56 10-6 m

the diffraction diameter is

        d_myope = 2y

         d_myope = 9.16 10-6 m

         \frac{d_{normal}}{d_{myope}} = 9.49 /9.16

        \frac{d_{normal}}{d_{myope}} =  1.04

we can see that the two diameters have the same order of magnitude and are very close to each other

8 0
3 years ago
2 When a cube of hot metal is placed in a beaker of cold water, the temperature of the water -
jek_recluse [69]
The answer to this is B
4 0
3 years ago
We need to find the launch velocity of our new marble launcher. we know that it will launch a 25g marble to a distance of 73 cm,
White raven [17]

The launch velocity of the marble launcher is 34.65 m/s

Given that the launch velocity of marble launcher, launches a 25g marble to a distance of 73 cm (0.73 m) and the marble roll up to 6.2 meters before stopping. The launch height is 20 cm (0.2 m).

The time for landing can be calculated by the second equation of motion formula:

h = ut + \frac{1}{2}gt^{2}

Let u = 0

0.2 = 0×t + \frac{1}{2} × 9.8 × t^{2}

t^{2} = \frac{0.2}{4.9}

t^{2} = 0.04

t = 0.2s

Now, the launch velocity of the marble launcher can be calculated by:

Speed = Distance / Time

Speed = \frac{0.73 + 6.3}{0.2}

Speed = \frac{6.93}{0.2}

Speed = 34.65 m/s

Therefore, the launch velocity of the marble launcher is 34.65 m/s

Know more about Launch velocity: -brainly.com/question/18883779

#SPJ9

3 0
10 months ago
When a 12 V battery is connected to a 6 uF capacitor, how much energy is stored
adoni [48]

The energy stored in a capacitor is

E = (1/2) · (capacitance) · (voltage)²

E = (1/2) · (6 x 10⁻⁶ F) · (12 V)²

E = (3 x 10⁻⁶ F) · (144 V²)

<em>E = 4.32 x 10⁻⁴ Joule</em>

(That's 0.000432 of a Joule)

4 0
2 years ago
Other questions:
  • To protect her new two-wheeler, Iroda Bike
    7·1 answer
  • A homeowner installs an electrical heated mirror into the shower room. When a person has a shower, the heated mirror does not go
    5·2 answers
  • 3 objects that have gravitational potential energy?
    5·2 answers
  • force f is separated ingto two , components, p and q, which are at a right angle to each other. what are the values of p and q?
    11·1 answer
  • You have a spring with k = 640 N/m connected to a mass with m = 10 kg. You start the system oscillating and measure the velocity
    12·1 answer
  • A small car collides with a large truck is the magnitude of the force experience by the car greater than less than or equal to t
    5·2 answers
  • The Coriolis effect is the result of which action?
    10·1 answer
  • Electricity is the _____________ of electrons, because electrons _____________ from atom to atom.
    7·2 answers
  • What can be found in every skeletal muscle?
    12·2 answers
  • if a cyclist traveled southwest a distance of 12,250 meters in 1.7 hrs what would the velocity of the cyclist be?
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!