Answer:
a force
Explanation:
Because if we apply force then only an object can slow down, speed up or change direction
Decreases, stays the same, increases.
The volume decreases because as air is cooled, the individual molecules collectively possess less kinetic energy and the distances between them decrease, thus leading to a decrease in the volume they occupy at a certain pressure (please note that my answer only holds under constant pressure; air, as a gas, doesn't actually have a definite volume).
The mass stays the same because physical processes do not create or destroy matter. The law of conservation of mass is obeyed. You're only cooling the air, not adding more air molecules.
The density decreases because as the volume decreases and mass stays the same, you have the same mass occupying a smaller volume. Density is mass divided by volume, so as mass is held constant and volume decreases, density increases.
= 3.456 × 1011
(scientific notation)
= 3.456e11
(scientific e notation)
= 345.6 × 109
(engineering notation)
(billion; prefix giga- (G))
= 345600000000
(real number)
Hi there!
We can use the rotational equivalent of Newton's Second Law:

Στ = Net Torque (Nm)
I = Moment of inertia (kgm²)
α = Angular acceleration (rad/sec²)
We can plug in the given values to solve.
