V1/T1=V2/T2
V2=(V1)(T2)/T1
Plug in values given (for the temp you can either turn 300K to 27°C or turn 132°C into kelvin
V2= 4400 mL= 4.4L
Answer is: <span>lumps os sugar dissolving in water.
Sugar has very good solubility in water and it dissolves readily, which is </span><span>example of a physical change.
</span>Gibbs free energy (G) determines if reaction will proceed
spontaneously, if ΔG is negative, reaction is spontaneous <span>(ΔG = ΔH - T·ΔS).
</span>In other examples, reactions are spontaneous in reverse way, for example spontaneous is forming sodium chlorine from sodium metal and chlorine gas, but not sodium chloride forming sodium metal and chlorine gas, because a lot of energy is needed for that reaction.
The correct answer is:
Metals
They are all alkali and transition metals
Explanation:
The periodic table includes elements clustered into groups with comparable properties. Alkali metals are reactive, soft metals with low densities. Transition metals are unreactive metals that have many have common uses. Halogens are reactive non-metals that form glowing vapors.
Answer : The final number of moles of gas that withdrawn from the tank to lower the pressure of the gas must be, 0.301 mol.
Explanation :
As we know that:

At constant volume and temperature of gas, the pressure will be directly proportional to the number of moles of gas.
The relation between pressure and number of moles of gas will be:

where,
= initial pressure of gas = 24.5 atm
= final pressure of gas = 5.30 atm
= initial number of moles of gas = 1.40 moles
= final number of moles of gas = ?
Now put all the given values in the above expression, we get:


Therefore, the final number of moles of gas that withdrawn from the tank to lower the pressure of the gas must be, 0.301 mol.
Answer:
E
Explanation:
Here in this question, what we will do is to select which of the pairs that do not correlate.
A. Enthalpy and heat content
This two terms are at par with each other. By definition, the enthalpy of a system simply is the total amount of heat content it has.
B. Endothermic reaction and +H
These two terms are at par with each other. An endothermic reaction is one in which heat is absorbed from the surroundings. It has a positive value for the heat content i.e the enthalpy is positive and thus H is positive.
C. Exothermic reaction and -H
An exothermic reaction is one in which heat is released to the environment. It usually has a negative value for the enthalpy and thus the value of H is negative.
D. High energy and High Stability
These two terms are not at par. When an entity has or is of high energy, it is usually unstable. An entity at a higher energy level will not be stable until it goes to a lower level of energy.
Thus higher energy level is associated with lesser stability while lower energy levels are associated with higher stability. The lesser the energy of an entity, the higher its stability.
This makes the option our answer.