Answer:
For the purposes of your question, we can think of speed and velocity as being the same thing. Therefore, the potential energy of an object is proportional to the square of its velocity (speed). In other words, If there is a twofold increase in speed, the potential energy will increase by a factor of four.
Answer:
6.52 × 10^14 Hz
i don't know if that's right tbh
The atomic theory started with Democritus, who stated that all space was made up of indivisible particles called atoms, though Aristotles refuted that statement by saying that matter didn’t exist, he believed in the four elements: air, fire, water, and earth. Then came Dalton, who revived Democritus’s ideas and proposed the law of multiple proportions, he revived the idea that all space was made of atoms. Soon after, J.J Thompson discovered the electron by using cathode rays. Max Planck developed the quantum theory by stating that electromagnetic radiation could only be emitted in quantized form (later called quanta). Einstein furthered this idea with studies of light. Robert Millikan eventually measured the charge of a single electron. Ernest Rutherford used a gold foil experiment and discovered the nuclei, considering his alpha particles were deflected by some object. Niels Bohr made the atomic model with electrons spinning around an atom’s nucleus, Erwin Schrodinger describes how electrons have wave like properties. James Chadwick then discovers the neutron!
There ya have it!
Answer:

Explanation:
We know we will need an equation with masses and molar masses, so let’s gather all the information in one place.
M_r: 58.12 44.01
2C₄H₁₀ + 13O₂ ⟶ 8CO₂ + 10H₂O
m/g: 9.511
1. Moles of C₄H₁₀

2. Moles of CO₂
The molar ratio is 8 mol CO₂:2 mol C₄H₁₀

3. Mass of CO₂

Answer:
1.204 × 10²³
Explanation:
The number of atoms in a mole is always 6.022 × 10²³, known as Avogadro's number or Avogadro's constant.
To convert moles to atoms, multiply the molar amount by Avogadro's number.
(6.022 × 10²³) × 0.2
= 1.204 × 10²³