Answer:
Q = 2260.44 j
Explanation:
Given data:
Mass of ice = 18 g
Initial temperature = -10 °C
Final temperature = 20°C
Heat absorbed by ice = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = Final temperature - initial temperature
ΔT = 20°C - (-10°C)
ΔT = 30°C
Specific heat of water = 2.00 j/g.°C
Q = 18 g × 4.186 j/g.°C × 30°C
Q = 2260.44 j
Answer:
They differ by their atomic mass and have same proton number.
Explanation:
Isotopes are atoms of the same element with the same proton or atomic number but with different atomic masses.
This is an acid-base reaction where HF is the acid and H2O is the base (it's amphoteric and can be an acid or a base). The products would then H3O+ (the conjugate acid) and F- (the conjugate base). Now, we can simply construct a reaction using the found products and reactants. This acid-base reaction would be HF + H2O <--> H3O+ + F-.
Hope this helps!
Answer:
Neutralization reactions
Explanation:
A neutralization reaction is a reaction between an acid and a base. Products of this type of reaction is water and a salt. The pH of the salt product would depend on how strong or weak the base and acid would be when they react with each other. Although the characteristics of bases and acids are practically polar opposites, when combined, they cancel each other our producing a neutralized product.
Answer:
Option C = object B by 1 gram per cubic cm.
Explanation:
Given data:
Mass of object A = 12 g
Volume of object A = 8 cm³
Mass of object B = 20 g
Volume of object B = 8 cm³
Densities = ?
Solution:
Density:
Density is equal to the mass of substance divided by its volume.
Units:
SI unit of density is Kg/m3.
Other units are given below,
g/cm3, g/mL , kg/L
Formula:
D=m/v
D= density
m=mass
V=volume
Symbol:
The symbol used for density is called rho. It is represented by ρ. However letter D can also be used to represent the density.
Density of object A:
d = m/v
d = 12 g/ 8 cm³
d = 1.5 g/cm³
Density of object B:
d = m/v
d = 20 g/ 8 cm³
d = 2.5 g/cm³
object b has high density.